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ABSTRACT 

This research presents an in-depth analysis of urban temperature data through advanced time series decomposition and 

statistical modelling, aiming to elucidate the complex dynamics of temperature variations within an urban context. 

Employing a robust methodology that combines seasonal decomposition, the Augmented Dickey-Fuller test for stationarity, 

and autocorrelation analyses, the study comprehensively explores both the predictable and random components of 

temperature fluctuations. Key findings indicate that the trend accurately captures the central tendencies and seasonal 

patterns of urban temperatures, with most predictions falling within an acceptable range of the actual measurements. The 

seasonal and trend components of the time series reveal consistent long-term patterns and clear seasonal variations, 

essential for understanding and forecasting weather changes. Additionally, the analysis of residuals, particularly through 

Kernel Density Estimation and boxplots, highlights the occurrences of extreme temperature deviations and identifies 

potential areas for refinement. This study contributes significantly to the fields of urban climatology and meteorological 

forecasting by providing detailed insights into the microclimatic conditions of urban areas. The findings underscore the 

importance of understanding temperature variability and extremes, especially in light of changing climate patterns and 

urban development. Furthermore, the research identifies pathways for future work, emphasizing integrating additional 

environmental factors, exploring more sophisticated modelling techniques, and enhancing predictive capabilities for 

extreme weather events. Overall, this research offers valuable implications for urban planners, policymakers, and climate 

scientists in devising strategies to mitigate the impacts of extreme temperatures and improve urban living conditions.           
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1. Introduction 
 

In the era of escalating climate concerns, the 

analysis of temperature data has never been more 

critical. Urban areas, in particular, present a unique 

climatic profile due to the urban heat island (UHI) 

effect, where modifications in land surfaces and 

urban structures lead to higher temperatures than 

rural ones. This study delves into the intricate 

patterns of urban temperature variations, aiming to 

decode the underlying seasonal and trend 

components that characterize these changes over 

time. 
 

This research is grounded in a comprehensive 

examination of urban climatology and time series 

analysis, drawing upon seminal works and 

contemporary studies. Oke's seminal work (1982) 

lays the foundation for understanding the UHI 

effect, providing a detailed examination of its 

energetic basis. Stewart & Oke (2012) extend this 

understanding by categorizing urban areas into 

local climate zones, offering a systematic approach 

to studying urban temperature variations. These 

foundational texts are crucial for contextualizing 

urban heat islands' spatial and temporal dynamics, 

as observed in the current study. 

 

This research's significance lies in its contribution 

to the broader field of climatology and its potential 

applications in urban planning and public health. As 

cities grow, understanding temperature dynamics 

becomes essential for sustainable urban 

development and mitigating heat-related health 

risks. Studies by Meehl & Tebaldi (2004) and Tan 

et al. (2010) discuss the increasing intensity and 

frequency of heatwaves due to climate change, 

underscoring the health implications in urban 

settings. These studies provide a backdrop for the 
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importance of accurate temperature modelling and 

forecasting in mitigating heat-related health risks in 

urban populations. 
 

Further, research by Grimmond (2007) emphasizes 

the complexity of urban climates and the need for 

detailed observational and modelling approaches to 

understand urban temperature dynamics. 

Additionally, Li & Bou-Zeid (2013) explored the 

interaction between urban forms and heat waves, 

highlighting the vulnerability of specific urban 

layouts to extreme temperatures. This 

understanding is critical for informing urban design 

strategies to reduce heat exposure. 
 

Employing a comprehensive time series analysis, 

this research leverages advanced statistical methods 

and visualization tools to dissect the maximum 

temperature data of Visakhapatnam Airport. By 

adopting the Seasonal and Trend decomposition of 

time series (STL) approach, augmented with 

statistical tests such as the Augmented Dickey-

Fuller test, the research provides a nuanced 

understanding of the temporal patterns in 

temperature data. This multifaceted analysis is 

crucial for identifying long-term trends, discerning 

cyclical patterns, and isolating irregular 

components within the urban temperature data. 
 

The methodology used in this study is informed by 

the works of Box et al. (2015), Chatfield (2016), 

and Hamilton (1994), who offer comprehensive 

methodologies for time series analysis, forecasting, 

and control, which are fundamental to the 

decomposition and analysis of temperature data. 

Recent advancements in statistical modelling, such 

as those by Hyndman & Athanasopoulos (2018), 

further enhance the robustness of the analysis by 

providing tools for handling complex time series 

data. 
 

The implications of urban temperature dynamics 

extend beyond immediate climatic impacts, 

affecting energy consumption, public health, and 

urban infrastructure. Akbari, Pomerantz, & Taha 

(2001) discuss the potential for reflective surfaces 

and vegetation to mitigate UHI effects, while Sailor 

(2014) reviews the role of building design in urban 

temperature management. These studies underscore 

the importance of integrating climate-responsive 

strategies into urban planning. 

 

Additionally, the research builds upon the findings 

of Santamouris (2014) and Stone et al. (2010), who 

discuss strategies for cooling cities and the 

relationship between urban form and vulnerability 

to extreme heat. Their studies highlight the role of 

urban design and green infrastructure in mitigating 

UHI effects and adapting to climate change. 

 

The objectives of this study are twofold: firstly, to 

meticulously analyze the maximum temperature 

data to extract meaningful insights about its trend, 

seasonality, and irregular components; and 

secondly, to interpret these findings in the context 

of urban climatic changes, offering a valuable 

perspective for policymakers, urban planners, and 

environmental researchers. By doing so, this paper 

aims to contribute a detailed data-driven narrative 

to the discourse on urban climate resilience and 

adaptation strategies. 

 

Through this investigation, the research aims to 

bridge the gap between raw meteorological data and 

actionable knowledge, contributing to the growing 

body of literature on urban climate analysis and 

environmental monitoring. It endeavours to provide 

a comprehensive analysis that not only elucidates 

the complex dynamics of urban temperatures but 

also examines the implications of these patterns for 

urban dwellers and the environment. Furthermore, 

this study seeks to inspire future research and 

action, encouraging a proactive approach to 

understanding and managing the climatic 

challenges posed by urban environments. 

 

2. Data and Methodology 

 

This study employs a multifaceted approach to 

analyze urban temperature data through advanced 

time series analysis techniques, integrating various 

statistical models and tests to ensure a 

comprehensive understanding of the underlying 

patterns. The methodology is meticulously crafted 

to dissect and interpret the complex patterns in 

temperature data, focusing on trend, seasonality, 

and residual components. 
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Initially, the data collection and preprocessing 

phase involves aggregating daily maximum 

temperature readings of Visakhapatnam airport 

from 1969 to 2023, ensuring data integrity and 

relevance. The dataset's 'Date' column is 

transformed into datetime format and indexed 

accordingly, vital for chronological data analysis. 

This transformation is represented by the equation: 
           

        Ti = f (Di)                                      ……(I) 
 

Where:  
 

Ti is the temperature reading and Di is the 

corresponding date. 
 

For the time series decomposition, the Seasonal and 

Trend decomposition using Loess (STL) approach 

is applied. This technique is expressed as: 
 

  Yt = Tt + St + Rt                                  ……(II) 
 

Where  
 

 Yt represents the observed data,  

 Tt represents the trend component,  

 St represents the seasonal component, 

 Rt represents the residual component at time t.  
 

The decomposition is tailored to an annual cycle, 

considering the Earth's revolution around the sun, 

thereby setting the decomposition period to 365 

days. The Seasonal and Trend decomposition using 

Loess (STL) assumes that the time series can be 

decomposed into additive components—trend, 

seasonality, and residuals. This method is highly 

flexible and allows for the variation in seasonal 

patterns over time. However, it assumes that the 

seasonality is periodic and consistent, which may 

not capture all forms of seasonality in the data, 

particularly if there are irregular or complex 

seasonal cycles. Additionally, STL requires a 

predefined seasonal cycle length (in our case, 365 

days) that may not fully capture the nuances of 

temperature variations that occur over shorter or 

irregular periods. The STL approach is selected for 

its flexibility and robustness in handling various 

types of seasonal patterns and its ability to fit the 

trend component adaptively, providing a more 

refined analysis of the temperature data. In the 

statistical analysis phase, the Augmented Dickey-

Fuller (ADF) test is conducted to assess 

stationarity, which is crucial for the reliability of 

subsequent analyses. 
 

The Augmented Dickey-Fuller (ADF) test assumes 

that the series under analysis is either stationary or 

can be made stationary through transformation. 

However, the ADF test might be sensitive to the 

presence of structural breaks or long-term cycles in 

the data, which could lead to incorrect conclusions 

about stationarity. 
 

The ADF test hypothesis can be formulated as: 

 

H0: The series has a unit root (non-stationary)            

……(III) 
 

H1: The series does not have a unit root (stationary)         

……(IV) 
 

A non-stationary series would indicate that the 

statistical properties of the data change over time, 

which could bias the analysis. In the event of non-

stationarity, transformation techniques such as 

differencing or logarithmic transformation may be 

applied to stabilize the variance and mean. 
 

Autocorrelation and partial autocorrelation 

functions (ACF and PACF) are then utilized to 

identify any autocorrelation in the residuals. These 

are represented as: 

 ….(V)                                                                                                                     

                                                             ……(VI) 

where: 
 

 k is the lag 

 Yt is the value of the time series at time t 

 ¯Y is the mean of the series. 
  

The analysis of autocorrelation (ACF) and partial 

autocorrelation (PACF) functions is fundamental in 

identifying the presence of autoregressive or 

moving average processes in the residuals. 

However, these functions can sometimes be 

difficult to interpret, particularly in complex data 

structures. These analyses have been applied 

conservatively, ensuring that identified patterns are 

robust and not artefacts of noise or model 

misspecification. 
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Figure 1: Analysis of temperature data. 

 

Visualization plays a pivotal role in this study, 

employing statistical graphing tools to present the 

data, trends, and patterns effectively.  
 

The meteorological analysis dives into each 

decomposed component, exploring the mean and 

standard deviation of the trend component, 

analyzing seasonal patterns, and investigating 

residuals for anomalies. This in-depth analysis is 

supported by additional statistical tests, including 

tests for homoscedasticity and normality in the 

residuals, providing a deeper understanding of the 

data's properties and the validity of the 

decomposition. The additional statistical tests for 

homoscedasticity and normality in residuals are 

crucial for validating the underlying assumptions. 

However, these tests themselves have limitations, 

particularly when dealing with large datasets where 

even minor deviations from normality or 

homoscedasticity may be flagged as significant. 

These have been addressed by complementing 

statistical tests with visual diagnostics to ensure that 

the results are not only statistically significant but 

also meaningful in a practical context. 

This approach interweaves statistical rigour with 

practical data handling and sophisticated 

visualization techniques, forming a robust, 

comprehensive urban temperature data analysis 

framework. This approach is designed to be 

adaptable, allowing for its application to diverse 

urban contexts and datasets, thereby extending its 

utility beyond the scope of this singular study. 

While the methodology employed is designed to be 

adaptable to different urban contexts, we 

acknowledge that the results and insights derived 

from this study are specific to the dataset used and 

may not be directly applicable to other regions with 

different climatic conditions. Furthermore, the 

methodology incorporates a feedback loop, where 

preliminary findings are reviewed, and the analysis 

is iteratively refined to ensure the most accurate and 

insightful results. Through this rigorous and 

detailed approach, the study aims to provide a deep 

and nuanced understanding of urban temperature 

dynamics, contributing valuable insights to the field 

of urban climatology. 
 

3. Results 

 

The results of the time series analysis of the 

maximum temperature data of Visakhapatnam 

airport reveal distinct patterns in the original data, 

trend, seasonality, and residuals. These findings are 

visually represented through a series of plots (Fig 

1), each highlighting a different component of the 

temperature data. 
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The plot of the original data (Fig 1a) provides a 

comprehensive view of the maximum temperatures 

over the observed period (1969-2023). It showcases 

the raw temperature readings without any 

modifications or smoothing, allowing for the 

visualization of both short-term fluctuations and 

long-term trends. The variations in the original data 

reflect the complex interplay between natural 

climatic variability, such as monsoon cycles, and 

anthropogenic influences, such as urbanization, 

which contribute to the urban heat island effect. 

This baseline plot is crucial for understanding the 

overall context of the decomposed components. 
 

The trend component (Fig 1b) illustrates the long-

term progression or direction in the temperature 

data, effectively smoothing out short-term 

fluctuations to reveal the underlying movement 

over time. This component is crucial for 

understanding how the maximum temperatures 

have evolved. The trend line indicates an overall 

temperature increase, reflecting broader climatic 

changes such as global warming. The observed 

trend is particularly significant for urban planners 

and public health officials, as it suggests a sustained 

rise in temperatures that could exacerbate heat-

related health risks and increase energy demands 

for cooling. 
 

The seasonal component (Fig 1c) captures the 

recurring patterns or cycles in the temperature data 

that occur within a fixed period - in this case, 

annually. This component is critical for 

understanding how temperatures fluctuate 

seasonally, closely tied to the monsoon cycle and 

other regional climatic patterns. The seasonal plot is 

essential for understanding the rhythmic nature of 

temperature changes and can be used to predict 

future patterns based on historical data. 
 

The variation of the seasonal component from 2 to -

2, as observed in the time series analysis of 

temperature data, reflects the magnitude and 

direction of seasonal fluctuations relative to the 

long-term trend. The values from 2 to -2 represent 

the degree to which the seasonal component 

influences the temperature data. A value of 2 

indicates that the seasonal effect increases the 

temperature by 2 degrees above the trend at a 

certain point or period in the cycle. Conversely, a 

value of -2 suggests a decrease in temperature by 2 

degrees below the trend due to the seasonal effect. 

The range between these values (-2 to 2) illustrates 

the full amplitude of the seasonal variation, 

providing a clear picture of how much the 

temperature rises and falls over a typical cycle. 

Positive values in the seasonal component indicate 

periods when the season contributes to higher 

temperatures than the overall trend. This might 

correspond to the warmer months of the year, such 

as summer or a peak season specific to the region's 

climate. On the other hand, negative values suggest 

that the seasonal effect is lowering the temperatures 

below the trend, likely corresponding to cooler 

periods like winter. Since the seasonal component 

is analysed over an annual cycle, the variation from 

2 to -2 also reflects the timing and duration of 

different seasons. The points where the seasonal 

component is highest (around 2) mark the peak of 

the warm season, while the lowest points (around -

2) signify the coldest part of the year. The transition 

between these extremes shows the gradual 

temperature change as seasons progress. These 

seasonal variations are relative to the overall trend 

of the data.  
 

Understanding the range and behaviour of the 

seasonal component is crucial for several reasons. It 

helps predict temperature patterns, plan for seasonal 

impacts, and understand how the typical seasonal 

cycle might change over time. For instance, shifts 

in the amplitude or timing of these seasonal 

fluctuations could indicate changes in climate 

patterns or the influence of urban development on 

local temperatures. The variation of the seasonal 

component from 2 to -2 in temperature data 

indicates the strength and direction of seasonal 

influences on temperature relative to the long-term 

trend. This analysis helps understand the cyclical 

nature of temperature changes, providing valuable 

insights for climate studies, urban planning, and 

environmental policy-making. 
 

The residuals (Fig 1d) represent the irregularities or 

random variations in the temperature data that 

cannot be attributed to the trend or seasonal 

components. This plot is a key indicator of the 

volatility and unexpected fluctuations in the 



Singh and Rawat 

50 

 

temperature data. These residuals are essentially the 

differences between the actual observed 

temperatures and the trend and seasonal 

components. The values from 10 to -10 indicate the 

extent of deviations from the expected pattern as 

defined by the trend and seasonal components. A 

residual of 10 means that the actual temperature 

was 10 degrees higher than the trend component for 

that specific point in time. Conversely, a residual of 

-10 indicates that the actual temperature was 10 

degrees lower than the trend component. This range 

shows the maximum extent of these irregularities 

over the observed period. 
 

Residuals are crucial for understanding the 

unpredictability inherent in the temperature data. 

They might include the effects of random or one-off 

events such as unusual weather patterns or sudden 

changes in local conditions (like urban development 

or deforestation). High positive values suggest 

periods of unexpected warming, while large 

negative values indicate unexpected cooling. Large 

positive or negative residuals could indicate 

extreme weather events or abrupt climate 

anomalies. For instance, an unseasonably hot day 

might result in a large positive residual, while an 

unexpectedly cold day might produce a significant 

negative residual. 
 

The decomposition of the temperature time series 

into its constituent parts has revealed a clear trend, 

a definitive seasonal cycle, and random variations 

represented by the residuals. The trend component 

indicates the general direction of temperature 

changes over the period, the seasonal component 

highlights the regular pattern occurring annually, 

and the residuals show the erratic and unpredictable 

elements of the temperature data. Together, these 

results provide a comprehensive understanding of 

the temperature dynamics in the focus area of the 

study.  
 

Stationarity check The Augmented Dickey-Fuller 

(ADF) test was conducted to determine the 

stationarity of the Visakhapatnam temperature time 

series. The results are critically important as they 

help understand whether the series has a unit root, a 

characteristic of a non-stationary series. The 

outcomes of the test are as follows: 

ADF Statistic: The calculated value is -

11.450497487592013. This statistic is a negative 

number, a primary indicator of stationarity. The 

more negative this statistic, the stronger the 

rejection of the hypothesis that there is a unit root at 

some confidence level. 
 

p-value: The p-value obtained from the test is 

5.874342587751549e-21. In hypothesis testing, the 

p-value helps determine the significance of the 

results. A low p-value (typically ≤ 0.05) indicates 

strong evidence against the null hypothesis, 

suggesting it can be rejected. 
 

The null hypothesis for the ADF test is that the time 

series has a unit root and is non-stationary. Given 

the extremely low p-value and the highly negative 

ADF statistic, we reject the null hypothesis. This 

suggests that the time series does not have a unit 

root and is stationary. 
 

The stationarity of the time series implies that the 

statistical properties such as mean, variance, and 

autocorrelation are constant over time. This is 

crucial for building reliable predictive models, as 

many time series forecasting methods assume 

stationarity. Stationary data are easier to model and 

can be used to draw more reliable conclusions. 
 

The result of the ADF test suggests that the 

temperature data is suitable for modelling without 

needing to be differenced to achieve stationarity. 

This expands the range of potential models that can 

be effectively applied for analysis and forecasting. 
 

The analysis of the trend component in the 

Visakhapatnam temperature data reveals significant 

insights into the long-term behaviour of 

temperatures in the studied area. The following key 

statistics were derived from the trend component: 
 

Mean Trend over the Period: The mean of the 

trend component is calculated to be 32.90. This 

value represents the average level around which the 

temperature varied over the entire study period. In 

the context of the temperature analysis for 

Visakhapatnam, this mean value indicates the area's 

general climatic conditions. A mean trend of 32.90 

suggests a relatively high average temperature, 

which might be characteristic of a warm urban 

climate or a region experiencing higher
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Figure 2: Average annual temperature cycle. 

 

temperatures. This high average temperature may 

have significant implications for urban planning, 

public health, and energy consumption patterns in 

the area 
 

Trend Variability (Standard Deviation): The 

standard deviation of the trend component is 0.58. 

This measure of variability indicates how much the 

temperature deviates from the mean trend over 

time. A standard deviation of 0.58 points to a 

relatively stable trend with minor fluctuations 

around the mean. This level of variability suggests 

that, despite seasonal and other short-term changes, 

the overall temperature in the area does not 

experience extreme variations over the long term. 
 

The analysis of the trend component of the 

temperature data for Visakhapatnam Airport 

highlights a relatively high and stable temperature 

regime over the study period. This finding is 

essential for comprehending the long-term thermal 

environment of the urban area, informing policy 

decisions, and preparing for future climatic 

scenarios. 
 

The examination of the seasonal component in the 

maximum temperature data of Visakhapatnam 

Airport provides a detailed understanding of the 

seasonal patterns and their impact on temperature 

variations. The key aspect of this analysis is the 

focus on the average annual temperature cycle 

derived from the seasonal component of the time 

series. 
 

The analysis involved grouping the seasonal 

component by the day of the year and calculating 

the mean for each day. This process resulted in a 

plot representing the average annual temperature 

cycle. This visualization is crucial as it encapsulates 

the typical seasonal temperature variations 

experienced throughout the year. The annual 

average temperature cycle can be seen in Fig 2. 
 

The plotted annual cycle clearly demonstrates how 

temperatures fluctuate over the course of a year. It 

highlights the periods of the year when 

temperatures are generally higher or lower, 

effectively capturing the essence of each season in 

terms of temperature behavior. 
 

The plot in Fig 2 allows for identifying key points 

in the year – such as the hottest and coldest days on 

average. These points are crucial for understanding 

the extremities of seasonal temperature variations 

and their timing. The seasonal component analysis 

of urban temperature data offers a comprehensive 
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view of how temperatures vary throughout the year. 

This analysis not only aids in understanding the 

inherent seasonal dynamics of the urban area's 

climate but also serves as a foundational element 

for further studies and applications in various 

sectors affected by temperature variations. 
 

The analysis of residuals, derived from the 

decomposition of the maximum temperature data of 

Visakhapatnam airport, provides insight into the 

irregular or unexplained variations in the 

temperature time series. The residuals are the 

differences between the actual observed 

temperatures and the trend and seasonal 

components. The following summary statistics were 

obtained from the residuals analysis: 
 

Count: The total number of residual data points 

analysed is 18,854. This high count indicates a 

substantial dataset, allowing for a robust analysis of 

the residuals. 
 

Mean of Residuals: The mean value of the 

residuals is approximately 0.004587. This value, 

being close to zero, suggests that, on average, the 

decomposed trend and seasonal components explain 

the temperature variations. A mean close to zero in 

residuals is often indicative of effectiveness. 
 

Standard Deviation: The standard deviation of the 

residuals is 2.617951. This measure indicates the 

typical deviation of the residual values from the 

mean. A standard deviation of about 2.62 suggests 

that fluctuations are still captured as residuals while 

much of the temperature variation is explained. 
 

Minimum and Maximum Values: The minimum 

and maximum values of the residuals are -9.764476 

and 11.858538, respectively. These values show the 

range of the residuals and indicate the largest 

underestimation and overestimation compared to 

the actual temperatures. Such extremes can be due 

to anomalous weather events. 
 

Interquartile Range: The 25th percentile (Q1) and 

the 75th percentile (Q3) are -1.811446 and 

1.738441, respectively. About 50% of the residuals 

fall within this range. This interquartile range 

measures the central tendency of the residuals and 

gives an idea of the typical magnitude of the 

deviations from the predicted trends. 

The residuals analysis offers a deeper 

understanding of the aspects of temperature 

variation that are not explained by the trend and 

seasonal components. This analysis is crucial for 

evaluating the accuracy, understanding unexplained 

variations in the data, and guiding further 

improvements in the approach. 
 

In the domain of time series analysis, elucidating 

autocorrelation and partial autocorrelation patterns, 

particularly in the residuals, is indispensable. These 

metrics offer profound insights into the latent 

structures and correlations within the residuals of 

urban temperature data, thereby informing the 

robustness and comprehensiveness of the analysis. 

Here, we delve into the analyses derived from the 

autocorrelation function (ACF) and partial 

autocorrelation function (PACF) plots of the 

residuals. 
 

The ACF plot is instrumental in assessing the 

correlation of the series with its own lagged values. 

By extending this analysis to the residuals, one can 

discern any systematic, non-random pattern. In this 

study, the ACF plot for the residuals was delineated 

for up to 50 lags (Fig 3). The decay pattern of 

autocorrelations, or their persistence, can be pivotal 

in determining whether the residuals represent 

white noise characterized by a lack of 

autocorrelation. Notably, pronounced 

autocorrelation at specific lags could suggest that 

the residuals harbour a systematic pattern, 

potentially implying that the current analysis might 

have overlooked certain components or underlying 

seasonal or cyclical dynamics. 
 

The Autocorrelation Function (ACF) plot for the 

temperature data exhibits a gradual decline in 

correlation values as the lag increases, consistent 

with the nature of time series data. An ACF value 

of 1 at lag 0 is expected, as it represents the perfect 

correlation of the series with itself at the same time 

point, serving as the baseline for the ACF plot 

without providing additional meteorological 

insights. A significant ACF value at lag 1 indicates 

a strong correlation between the temperature on a 

given day and the previous day's temperature, 

suggesting a high degree of day-to-day persistence 

in weather conditions. This is characteristic of
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Figure 3: Autocorrelation of residuals. 

 

stable atmospheric situations, where persistent high 

or low-pressure systems dominate, maintaining 

similar temperature patterns over consecutive days. 
 

The relatively high but gradually decreasing ACF 

values up to lag 5 suggest that the influence of past 

temperatures extends to subsequent days, albeit 

with diminishing strength. This pattern likely 

reflects the typical lifecycle of weather systems, 

which often impact a region's climate over several 

days before dissipating or transitioning. The slow 

decay in correlation values indicates that the 

prevailing weather and temperature conditions exert 

a lingering influence over the course of 

approximately one week. 
 

The presence of moderate autocorrelation at lag 10 

implies that the temperature from 10 days prior 

continues to exert a discernible impact on current 

temperature conditions. This finding may indicate 

longer-lasting weather patterns or the residual 

effects of large-scale climate phenomena such as 

prolonged heatwaves, cold spells, or extended 

periods of stable high-pressure conditions. 
 

The continued but gradually diminishing 

autocorrelation up to lag 40 suggests that past 

weather conditions exert a long-lasting influence, 

though with decreasing intensity. This may reflect 

the impact of broader climatic patterns, such as 

oceanic cycles or extended seasonal transitions, on 

the region's climate. 

At lag 50, the ACF value is significantly lower but 

remains positive, indicating a weak yet persistent 

relationship between current temperatures and those 

from 50 days earlier. This suggests the presence of 

very persistent seasonal trends or the influence of 

slow-moving climatic phenomena. 
 

The above ACF analysis provides valuable insights 

into the persistence and memory of temperature 

conditions from a meteorological perspective, 

highlighting both the short-term continuity and the 

long-term influence of past temperatures. This 

information is crucial for improving weather 

forecasting, understanding climate behaviour, and 

informing strategic planning for meteorological and 

climatic impacts. 
 

The PACF plot, elucidating the partial correlation 

of the series with its lagged values while controlling 

for the values at shorter lags, is particularly telling. 

It helps isolate the correlation at each individual 

lag, unencumbered by shorter lag correlations. 
 

The Partial Autocorrelation Function (PACF) plot 

of the residuals was constructed up to 50 lags, as 

illustrated in Fig 4. Significant peaks at specific 

lags within this plot suggest the potential existence 

of autoregressive components within the time 

series. The PACF is particularly valuable for 

identifying the appropriate order of autoregressive 

terms, which is essential if further modelling of the 

residuals is required. 
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Figure 4: Partial Autocorrelation of residuals. 

 

Analyzing the Partial Autocorrelation Function 

(PACF) from a meteorological standpoint involves 

interpreting the autoregressive nature of 

temperature data in the context of atmospheric and 

environmental factors. A high PACF value at lag 1 

indicates a strong influence of the previous day's 

temperature on the current day's temperature, 

suggesting significant day-to-day continuity in 

weather conditions. Meteorologically, this pattern is 

often associated with persistent atmospheric 

systems, such as high-pressure zones, which 

stabilize weather conditions over several 

consecutive days. 
 

The diminishing yet still observable PACF values 

at lags 2 and 3 imply that the influence of past 

temperatures extends beyond just the previous day, 

albeit with progressively decreasing strength. This 

pattern may reflect the gradual transition of weather 

systems or the residual effects of atmospheric 

conditions, such as a heatwave, that continue to 

impact temperatures for several days before the 

system fully dissipates or shifts. 
 

The presence of a similar level of partial 

autocorrelation at lag 4, comparable to that 

observed at lags 2 and 3, could indicate the typical 

duration of certain weather patterns in the region. 

For example, some weather systems may typically 

exert their influence over four days before moving 

on or breaking down, affecting the region's 

temperature profile during this timeframe. 

The presence of weak partial autocorrelation at 

these lags could point to the impact of longer-

lasting meteorological phenomena. For example, 

extended periods of stable weather or prolonged 

climate patterns like heatwaves or cold spells might 

affect the temperatures consistently over a week. 
 

The absence of partial autocorrelation from lag 11 

onwards suggests that the temperature on a given 

day is not significantly influenced by temperatures 

from more than 10 days prior. This pattern aligns 

with the typical behaviour of weather systems, 

which generally do not directly influence local 

temperatures beyond this timeframe. This indicates 

that the impact of past weather conditions tends to 

dissipate within approximately 10 days, reflecting 

the transient nature of most atmospheric systems. 
 

The PACF analysis in a meteorological context 

suggests a strong day-to-day continuity in 

temperature, likely influenced by persistent weather 

conditions, with diminishing influences over a
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Figure 5: Density estimation of residuals. 

 

period of up to 10 days. This understanding can be 

crucial for short-term weather forecasting and for 

studying the behaviour of local weather systems 

and their impact on temperature patterns. 
 

In this research work, the residuals from the urban 

temperature time series analysis is understood by 

employing a Kernel Density Estimation (KDE) plot. 

The KDE plot is a non-parametric way to estimate 

the probability density function of a random 

variable, in this case, the residuals of maximum 

temperature data. The KDE plot (Fig. 5) offers a 

smoothed view of the residuals' distribution, 

highlighting the residuals' concentration around 

zero, suggesting that the model is generally 

accurate. Unlike a histogram, which is also used for 

understanding distributions but can be sensitive to 

bin sizes, the KDE plot offers a more refined and 

interpretable visualization of how the residuals are 

distributed around the mean. 
 

The shape and spread of the KDE plot provide 

insights into the nature of the residuals. For 

instance, a narrow, sharp peak around zero would 

indicate that most residuals are small, suggesting 

that the model predictions are generally close to the 

actual values. On the other hand, a wider spread or 

multiple peaks might suggest more variability in the 

model's performance or the presence of different 

regimes or behaviours in the temperature data that 

couldn’t be captured uniformly. 
 

In a meteorological context, the residuals represent 

the unpredictable or unexplained variations in 

temperature after accounting for the regular pattern 

(trend and seasonality). These might be due to 

random weather fluctuations, unique climatic 

events, or other non-systematic factors. The tails of 

the distribution in the KDE plot can help identify 

outliers or extreme values in the residuals. These 

represent days when the actual temperature was 

significantly different from the trends. Investigating 

these anomalies could lead to insights into rare but 

impactful meteorological events, such as heatwaves 

or storms. 
 

The bell-shaped distribution of the residuals, 

tapering to zero around ±9, suggests that most 

temperature deviations are within this range. This 

indicates a relatively high level of accuracy, as 

extreme deviations (residuals) are uncommon. 

Meteorologically, this implies that while the 
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temperature patterns (trend and seasonality) are 

captured, there are inherent fluctuations in daily 

temperatures that cannot be perfectly predicted, 

possibly due to random or unforeseen weather 

events. 
 

The peak density at around 0.15, with most 

residuals clustering around zero, indicates that the 

trends are generally close to the actual 

temperatures. This is a desirable feature in any 

trend analysis, particularly in meteorological 

forecasting, where precision is critical. A 

concentration of values near zero in the residuals 

suggests that the unexplained variation is mostly 

random noise, typical in weather data, due to its 

chaotic nature and the influence of numerous 

uncontrollable and unpredictable factors. 
 

The noted depression on the left side of the curve, 

between 0 to -2 residuals, is an interesting anomaly. 

It indicates a slightly lower frequency of mild 

negative residuals than a perfectly symmetrical 

distribution suggests. In meteorological terms, this 

could imply that there are fewer instances where a 

slight overestimation of the temperature is captured 

compared to slight underestimations. This 

asymmetry might reflect certain climatic conditions 

or environmental factors that are not fully captured, 

leading to a marginally higher occurrence of days 

where the actual temperature is slightly cooler than 

predicted. 
 

Fig 6 shows the boxplot of the residuals for the 

maximum temperature dataset used in this study of 

Visakhapatnam Airport. A median value close to 

zero in the boxplot indicates the overall accuracy of 

the temperature trends. In meteorological terms, 

this suggests that, on average, the forecast trends 

are well-aligned with the actual temperatures. The 

median being at or near zero strongly indicates the 

absence of any bias. 
 

The box representing the IQR, extending from 

around -2 to +2, signifies that 50% of the residuals 

fall within this range. This relatively narrow spread 

indicates that most of the model's temperature 

predictions are within ±2 degrees of the actual 

temperatures. In the context of weather forecasting 

and climate modelling, this level of accuracy is 

generally considered good, especially for daily 

temperature predictions in urban areas. 
 

The description of the box as a perfect rectangle 

suggests a symmetrical distribution of residuals. 

The absence of skewness in the distribution is 

desirable as it suggests no consistent directional 

bias. 
 

From a forecasting perspective, the trend 

performance, as the boxplot indicates, is quite 

reliable for typical weather conditions. However, 

it's important to note that the IQR does not capture 

the behaviour of the trends under more extreme 

weather conditions, which outliers may represent. 
 

The upper and lower whiskers of the boxplot, 

extending to 7 and -7, indicate the range within 

which the bulk of the temperature residuals lie, 

excluding outliers. In meteorological terms, this 

means that the trends are usually within 7 degrees 

of the actual temperature. This range might be 

considered acceptable for general forecasting but 

suggests that significant deviations occur more 

frequently than ideal, possibly during unusual or 

extreme weather conditions. 
 

The circles above and below the whiskers represent 

outliers, which are residuals that lie beyond the 

expected range of variability based on the IQR.  
 

• Outliers above the upper whisker (up to 12.5) 

indicate days when the actual temperature was 

significantly higher than the trend. These could 

correspond to unexpected heatwaves or other 

anomalous warm weather events not captured by 

the trends. 
 

• Outliers below the lower whisker (down to -10) 

represent days when the actual temperature was 

much lower than the trend, possibly due to 

unforeseen cold days, storms, or other unusual 

cooling phenomena. 
 

The presence of outliers is particularly important in 

meteorology as they often correspond to extreme 

weather events that can have significant 

implications for public safety, energy demand, and 

general preparedness. The range and frequency of 

these outliers could also indicate the volatility of 

the region's climate or the presence of
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Figure 6: Boxplot of residuals. 

 

microclimates, which might be influenced by 

geographical features, urbanization, or changing 

climate patterns. The outliers, particularly those 

representing extreme temperature deviations, are 

crucial for understanding the area's risk of extreme 

weather events. They help meteorologists and urban 

planners identify potential vulnerabilities and 

prepare more effectively for unusual weather. 
 

The boxplot of residuals from the temperature data 

of Visakhapatnam, with its detailed features, 

including the position of the whiskers and the 

identification of outliers, provides a nuanced 

understanding of the trend performance and the 

nature of temperature variability in the area. 

Analyzing these features from a meteorological 

perspective is vital for assessing the reliability of 

temperature predictions, understanding the 

occurrence of extreme weather events, and guiding 

improvements in forecasting models and strategies. 
 

4. Conclusion 
 

This study provides a comprehensive analysis of the 

maximum temperature data from Visakhapatnam 

using advanced time series methods, offering 

significant contributions to our understanding of 

urban climatology in a tropical coastal city. The 

meticulous decomposition of temperature data into 

trend, seasonal, and residual components has 

yielded valuable insights into the underlying 

patterns and dynamics of urban temperatures over 

an extended period. 
 

This research's key findings include identifying 

long-term temperature trends, where the trend 

analysis revealed a persistent upward trajectory in 

maximum temperatures, indicating a gradual 

warming trend in Visakhapatnam. This finding is 

crucial as it underscores the impact of global 

climate change and urbanization on local 

temperature patterns. The relatively high and stable 

average temperature identified in the trend 

component suggests a warming climate, which 

could exacerbate the urban heat island effect and 

lead to more frequent and severe heat-related health 

risks. This insight is essential for urban planners 

and policymakers as they develop strategies to 

mitigate the impacts of rising temperatures and 

enhance urban resilience. Additionally, the detailed 

understanding of seasonal variations provided by 
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the seasonal analysis highlighted the periods of the 

year most susceptible to extreme temperatures. The 

predictable nature of these seasonal patterns allows 

for better planning and preparedness in agriculture, 

energy management, and public health sectors. For 

instance, understanding the timing and intensity of 

seasonal temperature peaks can help optimize 

energy consumption for cooling and prepare for 

potential heat waves. 
 

Furthermore, the assessment of residual variability 

identified the irregular and unpredictable 

components of temperature variations, which are 

not captured by the trend or seasonal models. These 

residuals often reflect sudden weather events or 

local climatic anomalies, which are critical for 

improving the accuracy of temperature forecasts 

and understanding the full range of temperature 

variability. Significant outliers in the residuals 

emphasise the need for further research into 

extreme weather events and their underlying causes. 
 

List of Recommendations 
 

(a) Enhance Urban Green Spaces: Increasing green 

spaces within urban areas is recommended based on 

the observed trend of rising temperatures and the 

significant impact of seasonal variations. Urban 

parks, green roofs, and street trees can mitigate the 

urban heat island effect by providing natural 

cooling and reducing heat absorption by built 

structures. This strategy is particularly important for 

areas most affected by extreme temperature 

variations. 
 

(b) Implement Reflective and Green Roofing 

Systems: The study’s findings on the relatively high 

and stable temperature trend over time suggest a 

need for measures that can reduce heat 

accumulation in buildings. Promoting reflective 

roofing materials and green roofs can lower 

building surface temperatures, reduce indoor 

cooling demands, and contribute to overall urban 

cooling. Incentives for adopting these technologies 

should be considered in urban planning policies. 
 

(c) Develop Heat-Resilient Urban Infrastructure: 

Identifying outliers representing extreme weather 

events highlights the necessity of heat-resilient 

infrastructure. Urban planners should prioritize the 

development of infrastructure that can withstand 

extreme temperatures, including materials that 

resist heat deformation and expanding shaded 

public spaces to protect citizens during heatwaves. 

 

(d) Strengthen Public Health Preparedness: Given 

the observed irregularities in temperature data, 

which may indicate unexpected and extreme 

weather events, it is crucial to strengthen public 

health preparedness. Establishing cooling centres, 

enhancing early warning systems for heatwaves, 

and conducting public awareness campaigns about 

the dangers of extreme heat are essential measures 

to protect vulnerable populations. 

 

(e) Integrate Climate-Responsive Urban Planning: 

The persistence of temperature trends over long 

periods, as revealed by the autocorrelation and 

partial autocorrelation analyses, suggests the need 

for long-term urban planning strategies considering 

ongoing climate changes. Policies should 

incorporate climate resilience by promoting energy-

efficient buildings, designing urban layouts that 

facilitate airflow, and reducing the urban heat island 

effect through reflective surfaces and vegetation. 
 

By integrating these strategies, the city can improve 

its resilience to heat-related risks and create a more 

sustainable and livable urban environment. 
 

The findings pave the way for further research in 

this domain, aiming to improve the prediction of 

urban weather patterns and thereby contribute to 

developing more resilient and sustainable urban 

environments. 
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