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ABSTRACT

This research presents an in-depth analysis of urban temperature data through advanced time series decomposition and
statistical modelling, aiming to elucidate the complex dynamics of temperature variations within an urban context.
Employing a robust methodology that combines seasonal decomposition, the Augmented Dickey-Fuller test for stationarity,
and autocorrelation analyses, the study comprehensively explores both the predictable and random components of
temperature fluctuations. Key findings indicate that the trend accurately captures the central tendencies and seasonal
patterns of urban temperatures, with most predictions falling within an acceptable range of the actual measurements. The
seasonal and trend components of the time series reveal consistent long-term patterns and clear seasonal variations,
essential for understanding and forecasting weather changes. Additionally, the analysis of residuals, particularly through
Kernel Density Estimation and boxplots, highlights the occurrences of extreme temperature deviations and identifies
potential areas for refinement. This study contributes significantly to the fields of urban climatology and meteorological
forecasting by providing detailed insights into the microclimatic conditions of urban areas. The findings underscore the
importance of understanding temperature variability and extremes, especially in light of changing climate patterns and
urban development. Furthermore, the research identifies pathways for future work, emphasizing integrating additional
environmental factors, exploring more sophisticated modelling techniques, and enhancing predictive capabilities for
extreme weather events. Overall, this research offers valuable implications for urban planners, policymakers, and climate
scientists in devising strategies to mitigate the impacts of extreme temperatures and improve urban living conditions.
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1. Introduction energetic basis. Stewart & Oke (2012) extend this
understanding by categorizing urban areas into
local climate zones, offering a systematic approach
to studying urban temperature variations. These
foundational texts are crucial for contextualizing
urban heat islands' spatial and temporal dynamics,
as observed in the current study.

In the era of escalating climate concerns, the
analysis of temperature data has never been more
critical. Urban areas, in particular, present a unique
climatic profile due to the urban heat island (UHI)
effect, where modifications in land surfaces and
urban structures lead to higher temperatures than
rural ones. This study delves into the intricate
patterns of urban temperature variations, aiming to
decode the underlying seasonal and trend
components that characterize these changes over

This research’s significance lies in its contribution
to the broader field of climatology and its potential
applications in urban planning and public health. As
cities grow, understanding temperature dynamics

time. becomes  essential  for  sustainable  urban
This research is grounded in a comprehensive development and mitigating heat-related health
examination of urban climatology and time series risks. Studies by Meehl & Tebaldi (2004) and Tan
analysis, drawing upon seminal works and et al. (2010) discuss the increasing intensity and
contemporary studies. Oke's seminal work (1982) frequency of heatwaves due to climate change,
lays the foundation for understanding the UHI underscoring the health implications in urban
effect, providing a detailed examination of its settings. These studies provide a backdrop for the
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importance of accurate temperature modelling and
forecasting in mitigating heat-related health risks in
urban populations.

Further, research by Grimmond (2007) emphasizes
the complexity of urban climates and the need for
detailed observational and modelling approaches to
understand urban  temperature  dynamics.
Additionally, Li & Bou-Zeid (2013) explored the
interaction between urban forms and heat waves,
highlighting the wvulnerability of specific urban
layouts to  extreme  temperatures.  This
understanding is critical for informing urban design
strategies to reduce heat exposure.

Employing a comprehensive time series analysis,
this research leverages advanced statistical methods
and visualization tools to dissect the maximum
temperature data of Visakhapatnam Airport. By
adopting the Seasonal and Trend decomposition of
time series (STL) approach, augmented with
statistical tests such as the Augmented Dickey-
Fuller test, the research provides a nuanced
understanding of the temporal patterns in
temperature data. This multifaceted analysis is
crucial for identifying long-term trends, discerning
cyclical  patterns, and isolating irregular
components within the urban temperature data.

The methodology used in this study is informed by
the works of Box et al. (2015), Chatfield (2016),
and Hamilton (1994), who offer comprehensive
methodologies for time series analysis, forecasting,
and control, which are fundamental to the
decomposition and analysis of temperature data.
Recent advancements in statistical modelling, such
as those by Hyndman & Athanasopoulos (2018),
further enhance the robustness of the analysis by
providing tools for handling complex time series
data.

The implications of urban temperature dynamics
extend beyond immediate climatic impacts,
affecting energy consumption, public health, and
urban infrastructure. Akbari, Pomerantz, & Taha
(2001) discuss the potential for reflective surfaces
and vegetation to mitigate UHI effects, while Sailor
(2014) reviews the role of building design in urban
temperature management. These studies underscore
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the importance of integrating climate-responsive
strategies into urban planning.

Additionally, the research builds upon the findings
of Santamouris (2014) and Stone et al. (2010), who
discuss strategies for cooling cities and the
relationship between urban form and vulnerability
to extreme heat. Their studies highlight the role of
urban design and green infrastructure in mitigating
UHI effects and adapting to climate change.

The objectives of this study are twofold: firstly, to
meticulously analyze the maximum temperature
data to extract meaningful insights about its trend,
seasonality, and irregular components; and
secondly, to interpret these findings in the context
of urban climatic changes, offering a valuable
perspective for policymakers, urban planners, and
environmental researchers. By doing so, this paper
aims to contribute a detailed data-driven narrative
to the discourse on urban climate resilience and
adaptation strategies.

Through this investigation, the research aims to
bridge the gap between raw meteorological data and
actionable knowledge, contributing to the growing
body of literature on urban climate analysis and
environmental monitoring. It endeavours to provide
a comprehensive analysis that not only elucidates
the complex dynamics of urban temperatures but
also examines the implications of these patterns for
urban dwellers and the environment. Furthermore,
this study seeks to inspire future research and
action, encouraging a proactive approach to
understanding and managing the climatic
challenges posed by urban environments.

2. Data and Methodology

This study employs a multifaceted approach to
analyze urban temperature data through advanced
time series analysis techniques, integrating various
statistical models and tests to ensure a
comprehensive understanding of the underlying
patterns. The methodology is meticulously crafted
to dissect and interpret the complex patterns in
temperature data, focusing on trend, seasonality,
and residual components.
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Initially, the data collection and preprocessing
phase involves aggregating daily maximum
temperature readings of Visakhapatnam airport
from 1969 to 2023, ensuring data integrity and
relevance. The dataset's 'Date’ column is
transformed into datetime format and indexed
accordingly, vital for chronological data analysis.
This transformation is represented by the equation:

Ti=f(Di)
Where:

Ti is the temperature reading and Di is the
corresponding date.

For the time series decomposition, the Seasonal and
Trend decomposition using Loess (STL) approach
is applied. This technique is expressed as:

Yt=Tt+ St+Rt

Where

Yt represents the observed data,

Tt represents the trend component,

St represents the seasonal component,

Rt represents the residual component at time t.

The decomposition is tailored to an annual cycle,
considering the Earth's revolution around the sun,
thereby setting the decomposition period to 365
days. The Seasonal and Trend decomposition using
Loess (STL) assumes that the time series can be
decomposed into additive components—trend,
seasonality, and residuals. This method is highly
flexible and allows for the variation in seasonal
patterns over time. However, it assumes that the
seasonality is periodic and consistent, which may
not capture all forms of seasonality in the data,
particularly if there are irregular or complex
seasonal cycles. Additionally, STL requires a
predefined seasonal cycle length (in our case, 365
days) that may not fully capture the nuances of
temperature variations that occur over shorter or
irregular periods. The STL approach is selected for
its flexibility and robustness in handling various
types of seasonal patterns and its ability to fit the
trend component adaptively, providing a more
refined analysis of the temperature data. In the
statistical analysis phase, the Augmented Dickey-
Fuller (ADF) test is conducted to assess
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stationarity, which is crucial for the reliability of
subsequent analyses.

The Augmented Dickey-Fuller (ADF) test assumes
that the series under analysis is either stationary or
can be made stationary through transformation.
However, the ADF test might be sensitive to the
presence of structural breaks or long-term cycles in
the data, which could lead to incorrect conclusions
about stationarity.

The ADF test hypothesis can be formulated as:

Ho: The series has a unit root (non-stationary)

A non-stationary series would indicate that the
statistical properties of the data change over time,
which could bias the analysis. In the event of non-
stationarity, transformation techniques such as
differencing or logarithmic transformation may be
applied to stabilize the variance and mean.

Autocorrelation  and  partial  autocorrelation
functions (ACF and PACF) are then utilized to
identify any autocorrelation in the residuals. These
are represented as:

S - D (Va1

= AV
ACF (k) ST (72 V)
PACF (k) =
Corr (Y, Yevr | Yeuq, .., Y t+k—1)
...... (VD)
where:
e Kkisthelag

e VYtis the value of the time series at time t
e Y is the mean of the series.

The analysis of autocorrelation (ACF) and partial
autocorrelation (PACF) functions is fundamental in
identifying the presence of autoregressive or
moving average processes in the residuals.
However, these functions can sometimes be
difficult to interpret, particularly in complex data
structures. These analyses have been applied
conservatively, ensuring that identified patterns are
robust and not artefacts of noise or model
misspecification.
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Figure 1: Analysis of temperature data.

Visualization plays a pivotal role in this study,
employing statistical graphing tools to present the
data, trends, and patterns effectively.

The meteorological analysis dives into each
decomposed component, exploring the mean and
standard deviation of the trend component,
analyzing seasonal patterns, and investigating
residuals for anomalies. This in-depth analysis is
supported by additional statistical tests, including
tests for homoscedasticity and normality in the
residuals, providing a deeper understanding of the
data's properties and the validity of the
decomposition. The additional statistical tests for
homoscedasticity and normality in residuals are
crucial for validating the underlying assumptions.
However, these tests themselves have limitations,
particularly when dealing with large datasets where
even minor deviations from normality or
homoscedasticity may be flagged as significant.
These have been addressed by complementing
statistical tests with visual diagnostics to ensure that
the results are not only statistically significant but
also meaningful in a practical context.

This approach interweaves statistical rigour with
practical data handling and sophisticated
visualization techniques, forming a robust,
comprehensive urban temperature data analysis
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framework. This approach is designed to be
adaptable, allowing for its application to diverse
urban contexts and datasets, thereby extending its
utility beyond the scope of this singular study.
While the methodology employed is designed to be
adaptable to different urban contexts, we
acknowledge that the results and insights derived
from this study are specific to the dataset used and
may not be directly applicable to other regions with
different climatic conditions. Furthermore, the
methodology incorporates a feedback loop, where
preliminary findings are reviewed, and the analysis
is iteratively refined to ensure the most accurate and
insightful results. Through this rigorous and
detailed approach, the study aims to provide a deep
and nuanced understanding of urban temperature
dynamics, contributing valuable insights to the field
of urban climatology.

3. Results

The results of the time series analysis of the
maximum temperature data of Visakhapatnam
airport reveal distinct patterns in the original data,
trend, seasonality, and residuals. These findings are
visually represented through a series of plots (Fig
1), each highlighting a different component of the
temperature data.
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The plot of the original data (Fig 1a) provides a
comprehensive view of the maximum temperatures
over the observed period (1969-2023). It showcases
the raw temperature readings without any
modifications or smoothing, allowing for the
visualization of both short-term fluctuations and
long-term trends. The variations in the original data
reflect the complex interplay between natural
climatic variability, such as monsoon cycles, and
anthropogenic influences, such as urbanization,
which contribute to the urban heat island effect.
This baseline plot is crucial for understanding the
overall context of the decomposed components.

The trend component (Fig 1b) illustrates the long-
term progression or direction in the temperature

data, effectively smoothing out short-term
fluctuations to reveal the underlying movement
over time. This component is crucial for

understanding how the maximum temperatures
have evolved. The trend line indicates an overall
temperature increase, reflecting broader climatic
changes such as global warming. The observed
trend is particularly significant for urban planners
and public health officials, as it suggests a sustained
rise in temperatures that could exacerbate heat-
related health risks and increase energy demands
for cooling.

The seasonal component (Fig 1c) captures the
recurring patterns or cycles in the temperature data
that occur within a fixed period - in this case,
annually. This component is critical for
understanding  how  temperatures  fluctuate
seasonally, closely tied to the monsoon cycle and
other regional climatic patterns. The seasonal plot is
essential for understanding the rhythmic nature of
temperature changes and can be used to predict
future patterns based on historical data.

The variation of the seasonal component from 2 to -
2, as observed in the time series analysis of
temperature data, reflects the magnitude and
direction of seasonal fluctuations relative to the
long-term trend. The values from 2 to -2 represent
the degree to which the seasonal component
influences the temperature data. A value of 2
indicates that the seasonal effect increases the
temperature by 2 degrees above the trend at a
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certain point or period in the cycle. Conversely, a
value of -2 suggests a decrease in temperature by 2
degrees below the trend due to the seasonal effect.
The range between these values (-2 to 2) illustrates
the full amplitude of the seasonal variation,
providing a clear picture of how much the
temperature rises and falls over a typical cycle.
Positive values in the seasonal component indicate
periods when the season contributes to higher
temperatures than the overall trend. This might
correspond to the warmer months of the year, such
as summer or a peak season specific to the region's
climate. On the other hand, negative values suggest
that the seasonal effect is lowering the temperatures
below the trend, likely corresponding to cooler
periods like winter. Since the seasonal component
is analysed over an annual cycle, the variation from
2 to -2 also reflects the timing and duration of
different seasons. The points where the seasonal
component is highest (around 2) mark the peak of
the warm season, while the lowest points (around -
2) signify the coldest part of the year. The transition
between these extremes shows the gradual
temperature change as seasons progress. These
seasonal variations are relative to the overall trend
of the data.

Understanding the range and behaviour of the
seasonal component is crucial for several reasons. It
helps predict temperature patterns, plan for seasonal
impacts, and understand how the typical seasonal
cycle might change over time. For instance, shifts
in the amplitude or timing of these seasonal
fluctuations could indicate changes in climate
patterns or the influence of urban development on
local temperatures. The variation of the seasonal
component from 2 to -2 in temperature data
indicates the strength and direction of seasonal
influences on temperature relative to the long-term
trend. This analysis helps understand the cyclical
nature of temperature changes, providing valuable
insights for climate studies, urban planning, and
environmental policy-making.

The residuals (Fig 1d) represent the irregularities or
random variations in the temperature data that
cannot be attributed to the trend or seasonal
components. This plot is a key indicator of the
volatility and unexpected fluctuations in the
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temperature data. These residuals are essentially the
differences  between the actual observed
temperatures and the trend and seasonal
components. The values from 10 to -10 indicate the
extent of deviations from the expected pattern as
defined by the trend and seasonal components. A
residual of 10 means that the actual temperature
was 10 degrees higher than the trend component for
that specific point in time. Conversely, a residual of
-10 indicates that the actual temperature was 10
degrees lower than the trend component. This range
shows the maximum extent of these irregularities
over the observed period.

Residuals are crucial for understanding the
unpredictability inherent in the temperature data.
They might include the effects of random or one-off
events such as unusual weather patterns or sudden
changes in local conditions (like urban development
or deforestation). High positive values suggest
periods of unexpected warming, while large
negative values indicate unexpected cooling. Large
positive or negative residuals could indicate
extreme weather events or abrupt climate
anomalies. For instance, an unseasonably hot day
might result in a large positive residual, while an
unexpectedly cold day might produce a significant
negative residual.

The decomposition of the temperature time series
into its constituent parts has revealed a clear trend,
a definitive seasonal cycle, and random variations
represented by the residuals. The trend component
indicates the general direction of temperature
changes over the period, the seasonal component
highlights the regular pattern occurring annually,
and the residuals show the erratic and unpredictable
elements of the temperature data. Together, these
results provide a comprehensive understanding of
the temperature dynamics in the focus area of the
study.

Stationarity check The Augmented Dickey-Fuller
(ADF) test was conducted to determine the
stationarity of the Visakhapatham temperature time
series. The results are critically important as they
help understand whether the series has a unit root, a
characteristic of a non-stationary series. The
outcomes of the test are as follows:
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ADF Statistic: The calculated value is -
11.450497487592013. This statistic is a negative
number, a primary indicator of stationarity. The
more negative this statistic, the stronger the
rejection of the hypothesis that there is a unit root at
some confidence level.

p-value: The p-value obtained from the test is
5.874342587751549¢e-21. In hypothesis testing, the
p-value helps determine the significance of the
results. A low p-value (typically < 0.05) indicates
strong evidence against the null hypothesis,
suggesting it can be rejected.

The null hypothesis for the ADF test is that the time
series has a unit root and is non-stationary. Given
the extremely low p-value and the highly negative
ADF statistic, we reject the null hypothesis. This
suggests that the time series does not have a unit
root and is stationary.

The stationarity of the time series implies that the
statistical properties such as mean, variance, and
autocorrelation are constant over time. This is
crucial for building reliable predictive models, as
many time series forecasting methods assume
stationarity. Stationary data are easier to model and
can be used to draw more reliable conclusions.

The result of the ADF test suggests that the
temperature data is suitable for modelling without
needing to be differenced to achieve stationarity.
This expands the range of potential models that can
be effectively applied for analysis and forecasting.

The analysis of the trend component in the
Visakhapatnam temperature data reveals significant
insights into the long-term behaviour of
temperatures in the studied area. The following key
statistics were derived from the trend component:

Mean Trend over the Period: The mean of the
trend component is calculated to be 32.90. This
value represents the average level around which the
temperature varied over the entire study period. In
the context of the temperature analysis for
Visakhapatnam, this mean value indicates the area's
general climatic conditions. A mean trend of 32.90
suggests a relatively high average temperature,
which might be characteristic of a warm urban
climate or a region experiencing higher
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Figure 2: Average annual temperature cycle.

temperatures. This high average temperature may
have significant implications for urban planning,
public health, and energy consumption patterns in
the area

Trend Variability (Standard Deviation): The
standard deviation of the trend component is 0.58.
This measure of variability indicates how much the
temperature deviates from the mean trend over
time. A standard deviation of 0.58 points to a
relatively stable trend with minor fluctuations
around the mean. This level of variability suggests
that, despite seasonal and other short-term changes,
the overall temperature in the area does not
experience extreme variations over the long term.

The analysis of the trend component of the
temperature data for Visakhapatnam Airport
highlights a relatively high and stable temperature
regime over the study period. This finding is
essential for comprehending the long-term thermal
environment of the urban area, informing policy
decisions, and preparing for future climatic
scenarios.

The examination of the seasonal component in the
maximum temperature data of Visakhapatnam
Airport provides a detailed understanding of the
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seasonal patterns and their impact on temperature
variations. The key aspect of this analysis is the
focus on the average annual temperature cycle
derived from the seasonal component of the time
series.

The analysis involved grouping the seasonal
component by the day of the year and calculating
the mean for each day. This process resulted in a
plot representing the average annual temperature
cycle. This visualization is crucial as it encapsulates
the typical seasonal temperature variations
experienced throughout the year. The annual
average temperature cycle can be seen in Fig 2.

The plotted annual cycle clearly demonstrates how
temperatures fluctuate over the course of a year. It
highlights the periods of the year when
temperatures are generally higher or lower,
effectively capturing the essence of each season in
terms of temperature behavior.

The plot in Fig 2 allows for identifying key points
in the year — such as the hottest and coldest days on
average. These points are crucial for understanding
the extremities of seasonal temperature variations
and their timing. The seasonal component analysis
of urban temperature data offers a comprehensive
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view of how temperatures vary throughout the year.
This analysis not only aids in understanding the
inherent seasonal dynamics of the urban area's
climate but also serves as a foundational element
for further studies and applications in various
sectors affected by temperature variations.

The analysis of residuals, derived from the
decomposition of the maximum temperature data of
Visakhapatnam airport, provides insight into the

irreqular or unexplained variations in the
temperature time series. The residuals are the
differences  between the actual observed
temperatures and the trend and seasonal

components. The following summary statistics were
obtained from the residuals analysis:

Count: The total number of residual data points
analysed is 18,854. This high count indicates a
substantial dataset, allowing for a robust analysis of
the residuals.

Mean of Residuals: The mean value of the
residuals is approximately 0.004587. This value,
being close to zero, suggests that, on average, the
decomposed trend and seasonal components explain
the temperature variations. A mean close to zero in
residuals is often indicative of effectiveness.

Standard Deviation: The standard deviation of the
residuals is 2.617951. This measure indicates the
typical deviation of the residual values from the
mean. A standard deviation of about 2.62 suggests
that fluctuations are still captured as residuals while
much of the temperature variation is explained.

Minimum and Maximum Values: The minimum
and maximum values of the residuals are -9.764476
and 11.858538, respectively. These values show the
range of the residuals and indicate the largest
underestimation and overestimation compared to
the actual temperatures. Such extremes can be due
to anomalous weather events.

Interquartile Range: The 25th percentile (Q1) and
the 75th percentile (Q3) are -1.811446 and
1.738441, respectively. About 50% of the residuals
fall within this range. This interquartile range
measures the central tendency of the residuals and
gives an idea of the typical magnitude of the
deviations from the predicted trends.

52

The residuals analysis offers a  deeper
understanding of the aspects of temperature
variation that are not explained by the trend and
seasonal components. This analysis is crucial for
evaluating the accuracy, understanding unexplained
variations in the data, and gquiding further
improvements in the approach.

In the domain of time series analysis, elucidating
autocorrelation and partial autocorrelation patterns,
particularly in the residuals, is indispensable. These
metrics offer profound insights into the latent
structures and correlations within the residuals of
urban temperature data, thereby informing the
robustness and comprehensiveness of the analysis.
Here, we delve into the analyses derived from the
autocorrelation  function (ACF) and partial
autocorrelation function (PACF) plots of the
residuals.

The ACF plot is instrumental in assessing the
correlation of the series with its own lagged values.
By extending this analysis to the residuals, one can
discern any systematic, non-random pattern. In this
study, the ACF plot for the residuals was delineated
for up to 50 lags (Fig 3). The decay pattern of
autocorrelations, or their persistence, can be pivotal
in determining whether the residuals represent
white noise characterized by a lack of
autocorrelation. Notably, pronounced
autocorrelation at specific lags could suggest that
the residuals harbour a systematic pattern,
potentially implying that the current analysis might
have overlooked certain components or underlying
seasonal or cyclical dynamics.

The Autocorrelation Function (ACF) plot for the
temperature data exhibits a gradual decline in
correlation values as the lag increases, consistent
with the nature of time series data. An ACF value
of 1 at lag 0 is expected, as it represents the perfect
correlation of the series with itself at the same time
point, serving as the baseline for the ACF plot
without providing additional meteorological
insights. A significant ACF value at lag 1 indicates
a strong correlation between the temperature on a
given day and the previous day's temperature,
suggesting a high degree of day-to-day persistence
in weather conditions. This is characteristic of
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Figure 3: Autocorrelation of residuals.

stable atmospheric situations, where persistent high
or low-pressure systems dominate, maintaining
similar temperature patterns over consecutive days.

The relatively high but gradually decreasing ACF
values up to lag 5 suggest that the influence of past
temperatures extends to subsequent days, albeit
with diminishing strength. This pattern likely
reflects the typical lifecycle of weather systems,
which often impact a region's climate over several
days before dissipating or transitioning. The slow
decay in correlation values indicates that the
prevailing weather and temperature conditions exert
a lingering influence over the course of
approximately one week.

The presence of moderate autocorrelation at lag 10
implies that the temperature from 10 days prior
continues to exert a discernible impact on current
temperature conditions. This finding may indicate
longer-lasting weather patterns or the residual
effects of large-scale climate phenomena such as
prolonged heatwaves, cold spells, or extended
periods of stable high-pressure conditions.

The continued but gradually diminishing
autocorrelation up to lag 40 suggests that past
weather conditions exert a long-lasting influence,
though with decreasing intensity. This may reflect
the impact of broader climatic patterns, such as
oceanic cycles or extended seasonal transitions, on
the region's climate.
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At lag 50, the ACF value is significantly lower but
remains positive, indicating a weak yet persistent
relationship between current temperatures and those
from 50 days earlier. This suggests the presence of
very persistent seasonal trends or the influence of
slow-moving climatic phenomena.

The above ACF analysis provides valuable insights
into the persistence and memory of temperature
conditions from a meteorological perspective,
highlighting both the short-term continuity and the
long-term influence of past temperatures. This
information is crucial for improving weather
forecasting, understanding climate behaviour, and
informing strategic planning for meteorological and
climatic impacts.

The PACF plot, elucidating the partial correlation
of the series with its lagged values while controlling
for the values at shorter lags, is particularly telling.
It helps isolate the correlation at each individual
lag, unencumbered by shorter lag correlations.

The Partial Autocorrelation Function (PACF) plot
of the residuals was constructed up to 50 lags, as
illustrated in Fig 4. Significant peaks at specific
lags within this plot suggest the potential existence
of autoregressive components within the time
series. The PACF is particularly valuable for
identifying the appropriate order of autoregressive
terms, which is essential if further modelling of the
residuals is required.
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Figure 4: Partial Autocorrelation of residuals.

Analyzing the Partial Autocorrelation Function
(PACF) from a meteorological standpoint involves
interpreting the  autoregressive  nature  of
temperature data in the context of atmospheric and
environmental factors. A high PACF value at lag 1
indicates a strong influence of the previous day's
temperature on the current day's temperature,
suggesting significant day-to-day continuity in
weather conditions. Meteorologically, this pattern is
often associated with persistent atmospheric
systems, such as high-pressure zones, which
stabilize  weather conditions over  several
consecutive days.

The diminishing yet still observable PACF values
at lags 2 and 3 imply that the influence of past
temperatures extends beyond just the previous day,
albeit with progressively decreasing strength. This
pattern may reflect the gradual transition of weather
systems or the residual effects of atmospheric
conditions, such as a heatwave, that continue to
impact temperatures for several days before the
system fully dissipates or shifts.

The presence of a similar level of partial
autocorrelation at lag 4, comparable to that
observed at lags 2 and 3, could indicate the typical
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duration of certain weather patterns in the region.
For example, some weather systems may typically
exert their influence over four days before moving
on or breaking down, affecting the region's
temperature profile during this timeframe.

The presence of weak partial autocorrelation at
these lags could point to the impact of longer-
lasting meteorological phenomena. For example,
extended periods of stable weather or prolonged
climate patterns like heatwaves or cold spells might
affect the temperatures consistently over a week.

The absence of partial autocorrelation from lag 11
onwards suggests that the temperature on a given
day is not significantly influenced by temperatures
from more than 10 days prior. This pattern aligns
with the typical behaviour of weather systems,
which generally do not directly influence local
temperatures beyond this timeframe. This indicates
that the impact of past weather conditions tends to
dissipate within approximately 10 days, reflecting
the transient nature of most atmospheric systems.

The PACF analysis in a meteorological context
suggests a strong day-to-day continuity in
temperature, likely influenced by persistent weather
conditions, with diminishing influences over a
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period of up to 10 days. This understanding can be
crucial for short-term weather forecasting and for
studying the behaviour of local weather systems
and their impact on temperature patterns.

In this research work, the residuals from the urban
temperature time series analysis is understood by
employing a Kernel Density Estimation (KDE) plot.
The KDE plot is a non-parametric way to estimate
the probability density function of a random
variable, in this case, the residuals of maximum
temperature data. The KDE plot (Fig. 5) offers a
smoothed view of the residuals' distribution,
highlighting the residuals’ concentration around
zero, suggesting that the model is generally
accurate. Unlike a histogram, which is also used for
understanding distributions but can be sensitive to
bin sizes, the KDE plot offers a more refined and
interpretable visualization of how the residuals are
distributed around the mean.

The shape and spread of the KDE plot provide
insights into the nature of the residuals. For
instance, a narrow, sharp peak around zero would
indicate that most residuals are small, suggesting
that the model predictions are generally close to the
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actual values. On the other hand, a wider spread or
multiple peaks might suggest more variability in the
model's performance or the presence of different
regimes or behaviours in the temperature data that
couldn’t be captured uniformly.

In a meteorological context, the residuals represent
the unpredictable or unexplained variations in
temperature after accounting for the regular pattern
(trend and seasonality). These might be due to
random weather fluctuations, unique climatic
events, or other non-systematic factors. The tails of
the distribution in the KDE plot can help identify
outliers or extreme values in the residuals. These
represent days when the actual temperature was
significantly different from the trends. Investigating
these anomalies could lead to insights into rare but
impactful meteorological events, such as heatwaves
or storms.

The bell-shaped distribution of the residuals,
tapering to zero around 9, suggests that most
temperature deviations are within this range. This
indicates a relatively high level of accuracy, as
extreme deviations (residuals) are uncommon.
Meteorologically, this implies that while the
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temperature patterns (trend and seasonality) are
captured, there are inherent fluctuations in daily
temperatures that cannot be perfectly predicted,
possibly due to random or unforeseen weather
events.

The peak density at around 0.15, with most
residuals clustering around zero, indicates that the
trends are generally close to the actual
temperatures. This is a desirable feature in any
trend analysis, particularly in meteorological
forecasting, where precision is critical. A
concentration of values near zero in the residuals
suggests that the unexplained variation is mostly
random noise, typical in weather data, due to its
chaotic nature and the influence of numerous
uncontrollable and unpredictable factors.

The noted depression on the left side of the curve,
between 0 to -2 residuals, is an interesting anomaly.
It indicates a slightly lower frequency of mild
negative residuals than a perfectly symmetrical
distribution suggests. In meteorological terms, this
could imply that there are fewer instances where a
slight overestimation of the temperature is captured
compared to slight underestimations. This
asymmetry might reflect certain climatic conditions
or environmental factors that are not fully captured,
leading to a marginally higher occurrence of days
where the actual temperature is slightly cooler than
predicted.

Fig 6 shows the boxplot of the residuals for the
maximum temperature dataset used in this study of
Visakhapatnam Airport. A median value close to
zero in the boxplot indicates the overall accuracy of
the temperature trends. In meteorological terms,
this suggests that, on average, the forecast trends
are well-aligned with the actual temperatures. The
median being at or near zero strongly indicates the
absence of any bias.

The box representing the IQR, extending from
around -2 to +2, signifies that 50% of the residuals
fall within this range. This relatively narrow spread
indicates that most of the model's temperature
predictions are within +2 degrees of the actual
temperatures. In the context of weather forecasting
and climate modelling, this level of accuracy is
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generally considered good, especially for daily
temperature predictions in urban areas.

The description of the box as a perfect rectangle
suggests a symmetrical distribution of residuals.
The absence of skewness in the distribution is
desirable as it suggests no consistent directional
bias.

From a forecasting perspective, the trend
performance, as the boxplot indicates, is quite
reliable for typical weather conditions. However,
it's important to note that the IQR does not capture
the behaviour of the trends under more extreme
weather conditions, which outliers may represent.

The upper and lower whiskers of the boxplot,
extending to 7 and -7, indicate the range within
which the bulk of the temperature residuals lie,
excluding outliers. In meteorological terms, this
means that the trends are usually within 7 degrees
of the actual temperature. This range might be
considered acceptable for general forecasting but
suggests that significant deviations occur more
frequently than ideal, possibly during unusual or
extreme weather conditions.

The circles above and below the whiskers represent
outliers, which are residuals that lie beyond the
expected range of variability based on the IQR.

 Outliers above the upper whisker (up to 12.5)
indicate days when the actual temperature was
significantly higher than the trend. These could
correspond to unexpected heatwaves or other
anomalous warm weather events not captured by
the trends.

* Outliers below the lower whisker (down to -10)
represent days when the actual temperature was
much lower than the trend, possibly due to
unforeseen cold days, storms, or other unusual
cooling phenomena.

The presence of outliers is particularly important in
meteorology as they often correspond to extreme
weather events that can have significant
implications for public safety, energy demand, and
general preparedness. The range and frequency of
these outliers could also indicate the volatility of
the region's climate or the presence of
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Figure 6: Boxplot of residuals.

microclimates, which might be influenced by
geographical features, urbanization, or changing
climate patterns. The outliers, particularly those
representing extreme temperature deviations, are
crucial for understanding the area's risk of extreme
weather events. They help meteorologists and urban
planners identify potential vulnerabilities and
prepare more effectively for unusual weather.

The boxplot of residuals from the temperature data
of Visakhapatnam, with its detailed features,
including the position of the whiskers and the
identification of outliers, provides a nuanced
understanding of the trend performance and the
nature of temperature variability in the area.
Analyzing these features from a meteorological
perspective is vital for assessing the reliability of
temperature  predictions,  understanding  the
occurrence of extreme weather events, and guiding
improvements in forecasting models and strategies.

4, Conclusion

This study provides a comprehensive analysis of the
maximum temperature data from Visakhapatnam
using advanced time series methods, offering
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significant contributions to our understanding of
urban climatology in a tropical coastal city. The
meticulous decomposition of temperature data into
trend, seasonal, and residual components has
yielded valuable insights into the underlying
patterns and dynamics of urban temperatures over
an extended period.

This research's key findings include identifying
long-term temperature trends, where the trend
analysis revealed a persistent upward trajectory in
maximum temperatures, indicating a gradual
warming trend in Visakhapatnam. This finding is
crucial as it underscores the impact of global
climate change and urbanization on local
temperature patterns. The relatively high and stable
average temperature identified in the trend
component suggests a warming climate, which
could exacerbate the urban heat island effect and
lead to more frequent and severe heat-related health
risks. This insight is essential for urban planners
and policymakers as they develop strategies to
mitigate the impacts of rising temperatures and
enhance urban resilience. Additionally, the detailed
understanding of seasonal variations provided by
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the seasonal analysis highlighted the periods of the
year most susceptible to extreme temperatures. The
predictable nature of these seasonal patterns allows
for better planning and preparedness in agriculture,
energy management, and public health sectors. For
instance, understanding the timing and intensity of
seasonal temperature peaks can help optimize
energy consumption for cooling and prepare for
potential heat waves.

Furthermore, the assessment of residual variability
identified the irregular and unpredictable
components of temperature variations, which are
not captured by the trend or seasonal models. These
residuals often reflect sudden weather events or
local climatic anomalies, which are critical for
improving the accuracy of temperature forecasts
and understanding the full range of temperature
variability. Significant outliers in the residuals
emphasise the need for further research into
extreme weather events and their underlying causes.

List of Recommendations

(a) Enhance Urban Green Spaces: Increasing green
spaces within urban areas is recommended based on
the observed trend of rising temperatures and the
significant impact of seasonal variations. Urban
parks, green roofs, and street trees can mitigate the
urban heat island effect by providing natural
cooling and reducing heat absorption by built
structures. This strategy is particularly important for
areas most affected by extreme temperature
variations.

(b) Implement Reflective and Green Roofing
Systems: The study’s findings on the relatively high
and stable temperature trend over time suggest a
need for measures that can reduce heat
accumulation in buildings. Promoting reflective
roofing materials and green roofs can lower
building surface temperatures, reduce indoor
cooling demands, and contribute to overall urban
cooling. Incentives for adopting these technologies
should be considered in urban planning policies.

(c) Develop Heat-Resilient Urban Infrastructure:
Identifying outliers representing extreme weather
events highlights the necessity of heat-resilient
infrastructure. Urban planners should prioritize the
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development of infrastructure that can withstand
extreme temperatures, including materials that
resist heat deformation and expanding shaded
public spaces to protect citizens during heatwaves.

(d) Strengthen Public Health Preparedness: Given
the observed irregularities in temperature data,
which may indicate unexpected and extreme
weather events, it is crucial to strengthen public
health preparedness. Establishing cooling centres,
enhancing early warning systems for heatwaves,
and conducting public awareness campaigns about
the dangers of extreme heat are essential measures
to protect vulnerable populations.

(e) Integrate Climate-Responsive Urban Planning:
The persistence of temperature trends over long
periods, as revealed by the autocorrelation and
partial autocorrelation analyses, suggests the need
for long-term urban planning strategies considering
ongoing climate changes. Policies should
incorporate climate resilience by promoting energy-
efficient buildings, designing urban layouts that
facilitate airflow, and reducing the urban heat island
effect through reflective surfaces and vegetation.

By integrating these strategies, the city can improve
its resilience to heat-related risks and create a more
sustainable and livable urban environment.

The findings pave the way for further research in
this domain, aiming to improve the prediction of
urban weather patterns and thereby contribute to
developing more resilient and sustainable urban
environments.
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