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ABSTRACT 

The study addresses systematic errors in the forecasts of a numerical weather prediction (NWP) model, particularly in 

critical variables such as precipitation that have  significant societal implications. Correcting these errors is imperative for 

enhancing the accuracy of the NWP model in flood risk management decisions. This research evaluates various quantile 

mapping (QM) bias correction approaches, employing empirical and parametric methods, to rectify precipitation forecasts 

generated by the National Centre for Medium-Range Weather Forecasting (NCMRWF) Unified Model, with a focus on 

Mumbai during the southwest monsoon season. The chosen location is important to the Integrated Flood Warning System 

(IFLOWS), a key program under the Ministry of Earth Sciences, Government of India, providing early warnings and 

decision support during flooding. The precipitation forecasts, calibrated using various QM techniques over the Mumbai 

region, demonstrated significant improvements compared to the raw forecasts, especially for higher thresholds. 

Particularly noteworthy is the better performance of parametric methods, specifically the Generalized Pareto parametric 

QM, in surpassing raw forecasts, establishing greater effectiveness for regional-scale flood warning applications during 

extreme rainfall events. This study highlights the efficacy of QM methodologies in treating precipitation forecasts, 

contributing valuable insights to the advancement of urban flood modelling, and associated decision-making processes. 
 

Keywords: Quantile Mapping (QM), Integrated Flood Warning System (iFLOWS), empirical QM method, parametric QM 

methods 
 

1. Introduction 
 

Extreme rainfall events have occurred more 

frequently in recent years across the country, with a 

profound impact on society and ecosystems 

(Rajeevan et al., 2008, Goswami et al., 2006; Roxy 

et al., 2017; Kulkarni et al., 2020, Krishnan et al., 

2020). These extreme events draw considerable 

attention every year during the monsoon season that 

lasts from June to September (JJAS) in India. 

Monsoon rainfall, also referred to as Indian 

Summer Monsoon Rainfall, contributes  

approximately 80% to the total annual precipitation 

amount in the Indian subcontinent (Sahai et al., 

2003; Kumar et al. 2010) with large spatial-

temporal variability. These variations have far-

reaching impacts on the lives of numerous people, 

agriculture, and the GDP of the country (Gadgil 

2003; Gadgil & Gadgil, 2006). The monsoon 

season brings heavy rainfall to India's western 

coast, with some parts experiencing an average 

rainfall exceeding 250 cm, primarily attributed to 

the orographic effect (Rao 1976; Francis and Gadgil 

2006). Mumbai, situated on India's western coast, 

frequently experiences flooding during intense 

precipitation events. Apart from the orographic 

effect, offshore vortices, troughs, depressions in the 

Arabian Sea, and mid-tropospheric cyclones 

(MTCs) contribute significantly to hazardous 

rainfall in Mumbai during this period (Rao 1976; 

Miller and Keshvamurthy 1968; Krishnamurti and 

Hawkins 1970; Ayantika et al. 2018). Remarkably 

massive floods hit the city in July 2005, 2017, and, 

most recently, 2022 (Jenamani, et al., 2006; Kumar 

et al., 2008). Therefore, having prior knowledge of 

urban floods triggered by extreme rainfall events is 

vital for mitigating associated social and economic 

risks in such climate-sensitive locations. 
 

Consequently, the Ministry of Earth Sciences of the 

Government of India, in partnership with the 

Disaster Management Department, Municipal 

Corporation of Greater Mumbai (MCGM), 

Government of Maharashtra, has implemented an 
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integrated flood warning system on 12th Jun 2020 

for Mumbai called iFLOWS-Mumbai. Mumbai is 

India's second city to adopt such a system, 

following Chennai. The iFLOWS system comprises  

seven modules: a decision support system, 

vulnerability, risk, flood, inundation, dissemination, 

and data integration. The flood warning system 

makes use of a Geographic Information System. 

This system consists of NWP models from the 

National Centre for Medium-Range Weather 

Forecasting (NCMRWF) and the India 

Meteorological Department (IMD), along with field 

data collected from the rain gauge network stations 

established by the Indian Institute of Tropical 

Meteorology, MCGM, and IMD. Additionally, 

thematic layers on land use, infrastructure, and 

other relevant factors are provided by MCGM. 
 

Over the past few decades, there have been 

significant improvements in global and regional 

models. But still, the general circulation models are 

usually inadequate to address the local and regional 

aspects due to their low resolution. This problem is 

better solved through downscaling techniques 

(Themeßl et al., 2011). Dynamical downscaling 

improves the representation of regional features in 

NWP forecasts but often suffers from important 

local inaccuracies owing to insufficient resolution 

and the uncertainties in the representation of small-

scale processes such as clouds, convection, 

boundary-layer radiative transfer, and internal 

variability due to their chaotic nature. 

Consequently, the direct applications of regional 

models in impact studies are hampered by model 

biases, especially for essential variables such as 

precipitation, which have significant societal 

implications (Cannon et al., 2015; Eden et al., 2012; 

Munday and Washington, 2018).  Therefore, it is 

imperative to correct the model inaccuracies for 

effective utilization of the NWP forecasts in 

decision-making applications related to flood risk 

management. 
 

In this context, several bias-correction techniques 

have been adopted to adjust the simulated statistics 

(i.e., the mean, variance, higher moments, or 

correlation properties such as lag-one correlation), 

to those of observations (Déqué, 2007; Piani et al., 

2010; Amengual et al., 2012; Berg et al., 2012; 

Gudmundsson et al., 2012; Wetterhall et al., 2012; 

Teutschbein & Seibert, 2012; Gutjahr & 

Heinemann, 2013; Maraun & Widmann, 2015; 

Macias et al., 2018; Kim et al., 2019; Yoshikane & 

Yoshimura, 2022). The “delta change method”, also 

known as “delta change scaling method” is the 

simplest bias-correction method, that utilizes 

scaling factors to adjust model simulations based on 

an observed baseline. This method adjusts the 

observed time series by incorporating the difference 

between future and control simulations (see Figure 

S1).   

 
Figure S1: Visual representation of delta change 

method. 
 

Indeed, this method is more commonly employed in 

climate simulations rather than NWP models. 

Moreover, it's important to note that the delta 

change method utilizes changes that model 

simulates, but the higher-order statistical moments 

in the observed time series remain unaltered. On the 

other hand, Widmann & Bretherton (2000) 

proposed a scaling factor defined as the ratio of 

present-day mean simulated precipitation to the 

mean observed precipitation for correcting 

forecasted precipitation. This method uses a 

constant coefficient of variation (COV) approach, 

resulting in both mean and variance being rescaled 

by the same factor, while higher-order moments in 

the calibrated data stay unchanged. Accurately 

representing these higher-order statistical moments, 

such as skewness and kurtosis, holds significant 

importance in flood forecasting. These moments 

influence the shape and tail of the probability 

distribution of precipitation or runoff, thereby 

directly impacting flood occurrence. 

Misrepresentations could lead to inadequate 

preparedness or unnecessary alarm, particularly in 

flood-prone regions, where the consequences of
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Table S1. Classification of Rainfall as per IMD 
 

Category 24 hour rainfall over a station 

Very light rain Trace - 2.4 mm 

Light rain 2.5 – 15.5 mm 

Moderate rain 15.6 – 64.4 mm 

Heavy rain 64.5 – 115.5 mm 

Very heavy rain 115.6 – 204.4 mm  

Extremely heavy rain >204.4 mm 

 

 
Figure 1:  Map indicating the study area's location. 

 

inaccurate forecasts can be severe. Therefore, 

precise calibration and validation of models to 

capture these aspects is essential for effective flood 

forecasting and risk mitigation. As a result,  recent 

studies emphasize  quantile mapping bias correction 

(QMBC) methods that adjust distinct quantiles 

individually to correct the higher-order statistical 

moments of the forecasted precipitation time series 

(Gudmundsson et al., 2012; Themeßl et al., 2012; 

Cannon et al., 2015; Kim et al. 2019). Furthermore, 

these techniques outperform other methods, 

particularly when it comes to precipitation data 

(Teutschbein and Seibert 2012, Themeßl et al., 

2012; Maraun & Widmann, 2015; Fang et al., 2015; 

Kim et al. 2019). Therefore, this study assesses the 

performance of various QMBC methods in 

improving rainfall forecasts of the global 

NCMRWF Unified Model (NCUM-G) operational 

model over Mumbai to support the MoES iFLOWS 

program. 
 

The article is organized as follows. An overview of 

the study area and data used is provided in section 

2. Section 3 describes the various statistical 

methods, including empirical and parametric 

quantile mapping, utilized in this study. The results 

and subsequent discussion are detailed in Section 4, 

followed by a summary and conclusion in Section 

5. 
 

2. Study area and Data 
 

2.1 Study area 
 

This study focuses on the  Santacruz station ( 72.85 

0E, 19.117 0N) in Mumbai (See Fig. 1), situated on 

the west coast of India. Mumbai's rapid 

urbanization and infrastructure expansion render it



Kaur et al. 

50 

 

 
 

Figure 2: Frequency of the extreme annual rainfall events (>64.5mm/day) at Santacruz station in 

Mumbai based on the IMD station data for the period 1979-2019. 
 

highly vulnerable to both natural and man-made 

disasters. Being situated on the windward side of 

the Western Ghats of India, Mumbai receives high-

magnitude and intense rainfall during the southwest 

monsoon season owing to the orographic effect 

(Francis and Gadgil 2006, Singh et al. 2017). The 

selection of Mumbai as the study area is motivated 

by the fact that the region has experienced the most 

severe extreme precipitation events (defined as 

exceeding 64.5 mm/day according to IMD criteria, 

as detailed in supplementary Table S1) in recent 

decades (see Fig. 2). Therefore, accurate 

precipitation predictions over Mumbai are crucial to 

facilitate decision-making applications related to 

flood risk management. 
 

2.2 Data 
 

This study employs a high-resolution Indian 

Monsoon Data Assimilation and Analysis 

(IMDAA) reanalysis, covering the period from 

1979 to 2019 (Ashrit et al., 2020; Rani et al., 2021). 

Additionally, an IMD observed station dataset 

spanning the same timeframe (1979 to 2019) is 

utilized (Jenamani et al., 2006), along with the 

NCUM-G operational forecast dataset for the 

southwest monsoon season from 2020-2023 (Sumit 

Kumar et al., 2020) over the Santacruz station in 

Mumbai. These datasets form the basis for 

constructing a bias correction (BC) model using 

various statistical methods, as detailed in Niranjan 

Kumar et al. (2022), and subsequently for training 

and testing the model. 

Furthermore, the bias correction model is applied to 

rectify the NCUM-G operational forecast data, 

evaluating the effectiveness of the calibration 

methods for flood applications. It is essential to 

note that the NWP dynamical core parameterization 

techniques employed for generating both the 

IMDAA reanalysis dataset and the NCUM-G are 

relatively similar. Given their shared model 

physics, IMDAA proves effective in correcting 

real-time forecasts from NCUM-G. 
 

3. Methodology 
 

3.1 Statistical Bias Correction (BC) approaches 
 

Bias Correction (BC) methods function as post-

processing tools in numerical modeling, aiming to 

refine the agreement between the model and 

observations. Statistical BC approaches develop a 

functional relationship between observed and 

simulated variables over a historical period, 

subsequently utilizing this relationship for model 

forecasts. The following subsections provide a 

concise overview of the different quantile methods 

employed in this study. 
 

3.1.1 Empirical Quantile Method (EQM) 
 

The Empirical Quantile Method (EQM) is a non-

parametric statistical BC approach that adjusts 

mean, standard deviation (variability), and shape 

errors by computing quantile-by-quantile changes 

in the simulated cumulative distribution function 

(CDF) (Boѐ et al., 2007; Déqué, 2007; Amengual et 
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al., 2012; Gudmundsson et al., 2012; Niranjan 

Kumar et al., 2022). 
 

Let "CAL" be the calibrated precipitation acquired 

after bias correction and "Obs" denote the observed 

precipitation. Then, for  i^th value of CDF, the 

calibrated precipitation is given as: 
 

                                 (1) 
 

where  defines the difference between control 

( ) and future (  raw simulated 

precipitation, i.e., . Then, the 

mean regime shift ( ) can be represented as   

   and the corresponding deviation from 

this shift, denoted as , is given by 

.  
 

This method, besides its simplicity and non-

parametric nature, has demonstrated effectiveness 

compared to other distribution and scaling BC 

methods (Boé et al., 2007; Gudmundsson et al., 

2012). However, instabilities emerge at higher 

quantiles (Gudmundsson et al., 2012; Gutjahr and 

Heinemann, 2013). Additionally, this method 

depends on numerous degrees of freedom, leading 

to non-stationarity for future periods (Piani et al. 

2010b, Gutjahr and Heinemann 2013). Therefore, 

we are also exploring parametric BC approaches 

discussed below, which rely on a lower degree of 

freedom. 
 

3.1.2 Parametric Quantile Method (PQM) 
 

The Parametric Quantile Method (PQM) is a 

parametric BC method that employs theoretical 

distribution rather than empirical distribution. This 

method adjusts the CDF of the simulated output to 

the corresponding observed distribution via a 

transfer function (i.e., two-parameter gamma 

distributions) (Piani et al., 2010; Niranjan Kumar et 

al., 2022). The gamma distribution's probability 

density function (pdf; 𝑦) is: 
 

          (2) 

Where Γ(.) represent the gamma function. ξ and σ 

are the shape and scale parameters of the gamma 

distribution, respectively. x denotes the normalized 

daily precipitation. The drawback of the PQM 

method is that there is no restriction on the upper 

limit, which can lead to false alarms for extreme 

rainfall events (Gutjahr and Heinemann, 2013). So, 

in this study, we adopted a new approach that 

combines the gamma distribution with the 

Generalized Pareto Distribution (GPD), which we 

further elaborate on below. 
 

3.1.3 Generalized Parametric Quantile Method 

(GPQM) 
 

The Generalized Parametric Quantile Method 

(GPQM) is also a parametric BC method that 

combines gamma and Generalized Pareto 

Distribution (GPD) (Niranjan Kumar et al., 2022). 

The pdf of GPD is: 

       (3)                      

 
where, ξ≠0,σ,and θ are the shape, scale, and 

threshold parameters of GPD, respectively. Here, 

the gamma distribution is applied to values below 

95th percentile (Yang et al. 2010) and a GPD to 

values above 95th percentile (Coles 2001). Thus, 

the GPQM method can be formulated as 
 

 
 

The methodology involves the calibration and 

testing of various quantile methods, as outlined in 

the flow diagram (Refer to Fig. 3). IMDAA 

reanalysis data from the grid nearest to the 

Santacruz station’s  location and observed station 

data from IMD, spanning a common period of 41 

years (i.e., 1979-2019), are utilized for assessment. 

The entire 41-year dataset is considered for training 

and testing the model from 2020-2023 (For more 

details, readers can refer to Niranjan Kumar et al., 

2022). Additionally, the calibration methods are 

applied to bias-correct the real-time operational 

NCUM-G forecasts. 
 

3.2 Categorical verification scores 
 

The performance of different quantile bias 

correction  methods is evaluated through 

categorical verification scores, which include 

metrics such as the probability of detection or hit 

rate (POD), false alarm ratio (FAR), and Equitable 

Threat Score (ETS). The categorical approach of
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Figure 3: Flow diagram depicting the methodology adopted in this study. 

 

Table 1. Contingency table 

 Observed Total 

Yes No  

Forecast Yes Hits False alarms Forecast Yes 

No Miss Correct Negative Forecast No 

Total  Observed Yes Observed No Total 
 

verifying quantitative precipitation forecast is based 

on the  2×2  contingency table given below (see 

Table 1). 
 

In this context, we define a "hit" as an event where 

the prediction matches the observation on a grid 

point. Conversely, if an event on a grid point is 

predicted but not observed, it is termed a "false 

alarm". A "miss" happens when an event is not 

predicted but is observed. Lastly, a "correct 

negative" occurs when an event does not happen 

and the model does not predict it. Utilizing these 

components of the contingency table, categorical 

skill scores are calculated for different rainfall 

thresholds. The following subsections provide a 

concise overview of the various categorical 

verification scores employed in this study. 
 

3.2.1 Probability of Detection (POD) 
 

The Probability of Detection (POD) or hit rate 

measures the model's ability to correctly detect the 

occurrence of specific weather events. It is 

calculated as the number of hits divided by the total 

number of event observations and expressed as: 

 

 
 

Its value ranges from 0 to 1, with 1 indicating a 

perfect score. 
 

3.2.2 False Alarm Ratio (FAR) 
 

The False Alarm Ratio (FAR) represents the 

proportion of forecasted events that were incorrect. 

It is computed by dividing the number of false 

alarms by the total number of forecasted events. 

Mathematically, it can be expressed as: 

 
 

This score ranges from 0 to 1, with 0 indicating a 

perfect score. 
 

3.2.3 Equitable Threat Score (ETS) 
 

The Equitable Threat Score (ETS) is especially 

useful for assessing deterministic forecasts and is 

commonly employed to verify rainfall in numerical 

weather prediction models as it penalizes constant 

and purely random forecasts heavily (Gandin and
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Figure 4: The CDF of daily precipitation obtained from the IMD station dataset (OBS), NCUM-G Day-01 

raw forecast precipitation (NCUMGRAW), and bias-corrected Day-01 forecast precipitation based on 

EQM (NCUMGEQM), PQM (NCUMGPQM), and GPQM (NCUMGGPQM) during the southwest monsoon 

(JJAS, 2020-23) over Santacruz station . 
 

Murphy, 1992). ETS quantifies the fraction of 

observed and/or forecast events that were 

accurately predicted, considering hits associated 

with random chance and defined as: 

 
 

where,   

 
 

The range of ETS scores is from -1/3 to 1, where 0 

indicates no skill, and a perfect score is 1. 
 

4. Results and Discussion 
 

4.1 Assessment of QM approaches for NCUM-G 

forecasts 
 

In this section, we first explore the empirical CDF 

relevant to the Santacruz station . Fig.4 depicts the 

CDF of daily precipitation sourced from the IMD 

station data (OBS), NCUM-G Day-01 raw forecast 

(NCUMGRAW), and bias-corrected Day-1 forecast 

precipitation acquired through EQM 

(NCUMGEQM), PQM (NCUMGPQM), and 

GPQM (NCUMGGPQM) during the summer 

monsoon (June–September 2020-23) over the 

Santacruz station  In particular, for higher 

thresholds (> 10 mm/day), the CDF of  

NCUMGRAW dataset deviates from the observed 

distribution. Despite its high spatial resolution, 

significant biases in extreme rainfall intensities 

compared to the IMD station dataset are apparent in 

NCUMGRAW. These biases impede the practical 

utility of NCUM-G in hydrology at local and 

regional scales, as well as in flood-related 

applications. Thus, rectifying these biases is crucial 

before employing them for urban flood forecasting 

purposes. To address this, we evaluate the CDF 

using different BC methods applied to the NCUM-

G precipitation data, following the procedures 

outlined in Section 3. The calibrated precipitation 

from various QM approaches shows a better 

alignment with OBS for higher thresholds (Fig. 4). 
 

To obtain more information about the effectiveness 

of various QM approaches in correcting the 

NCUM-G precipitation forecasts, we validate the 

calibrated precipitation acquired through various 

QM methods against the IMD station dataset. For 

this, firstly we took the NCUM-G Day-01, Day-03, 

and Day-05 raw forecasts (NCUMGRAW) during 

the southwest monsoon season from 2020-23. 

Subsequently, to calibrate the NCUM-G raw 

forecasts for the period 2020-23, we utilized the 

IMDAA and station-based IMD datasets spanning 

from 1979 to 2019 during southwest monsoon
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Figure 5: Time evolution of daily precipitation obtained from IMD station dataset (OBS), NCUM-G Day-

01 raw forecast (NCUMGRAW), and bias-corrected Day-01 forecast obtained based on (a) empirical 

quantile methods (EQM; NCUMGEQM), (b) parametric quantile method based on gamma distribution 

(PQM; NCUMGPQM), and (c) Generalized PQM based on gamma and GPD (GPQM; NCUMGGPQM) 

during the southwest monsoon (JJAS, 2020-23) over the Santacruz station. 
 

seasons over the Santacruz station for training 

purposes. This calibration is conducted based on 

monthly quantile technique, as elaborated earlier 

(refer to Methodology). Fig. 5 depicts the validation 

of Day-01 daily precipitation of NCUM-G raw 

forecasts (NCUMGRAW) against the IMD station-

based dataset (OBS) at Santacruz station   during 

the southwest monsoon season. Additionally, the 

calibrated precipitation obtained using the empirical 

method is shown in Fig. 5a (NCUMGEQM) and 

based on parametric methods in Fig. 5b, and 5c 

(NCUMGPQM, NCUMGGPQM). The Day-01 

daily precipitation time evolution at the Santacruz 

station demonstrates that the NCUMGRAW failed 

to capture numerous heavy rainfall events. For 

instance, if we categorized 64.5 mm/day and above 

events as heavy to extreme rains (See 

supplementary Table S1), approximately 36 such 

events were observed at the Santacruz station 

during the southwest monsoon season from 2020-

23. The NCUMGRAW accurately predicted only 8 

events, whereas the empirical method corrected 28 

events that were initially missed in the raw 

forecasts (Fig. 5a). However, the parametric
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Figure 6: Same as Fig. 5, but for the Day-03 forecast. 

 

methods, specifically GPQM, successfully 

predicted all the events that the raw forecasts 

missed (Fig. 5c). Similarly, as the forecast lead 

times progress, the time evolution of daily rainfall 

indicates that the NCUMG raw (NCUMGRAW) 

forecasts consistently underestimate the observed 

rainfall. However, the calibrated methods 

effectively address these underestimations 

compared to the NCUMGRAW, particularly for the 

heavy rainfall events (Fig. 6 and 7). 

 

To further understand how well various QM 

approaches perform in correcting the biases of raw 

forecasts across different lead times, the skill of 

various methods is evaluated using categorical 

verification scores such as POD, FAR, and ETS. 

Verification scores for rainfall thresholds of up to 

75 mm/day across different forecast lead times are 

depicted in Figure 8 for the Day-01 forecast (For 

Day-03 (Fig. S2) and Day-05 (Fig.S3) forecasts, 

please refer to Supplementary material). The 

calibrated precipitation exhibits an improvement in 

POD and ETS compared to the NCUMGRAW. 

Specifically, the POD and ETS of the calibrated 

precipitation exhibit higher values for moderate to  

heavy rainfall events (see Table S1) across all 

forecast lead times at the Santacruz station (see 

Supplementary Fig. S2 and S3). Moreover, with 

increasing forecast lead time, the calibrated 

methods demonstrate better performance compared 

to the raw forecasts (Fig. S2 and S3). However, a 

drawback of the POD score is its susceptibility to
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Figure 7: Same as Fig. 5, but for the Day-05 forecast. 

 

the number of hits, disregarding false alarms. 

Therefore, we have also included the FAR score, as 

depicted in Figures 8(b) for Day-01 forecast (For 

Day-03 in Fig. S2(b) and Day-05 in Fig.S3(b)). The 

FAR measures the fraction of events falsely 

predicted to occur, with a perfect FAR score being 

zero. In Day-01 to Day-05 forecasts, various QM 

approaches tend to overestimate false alarms for 

moderate to heavy rainfall events. However, the 

overestimation of such events in calibrated 

precipitation slightly diminishes with forecast lead 

time, as evidenced by the reduction in FAR score 

(Figs. 8(b), S2(b) and S3(b)). Therefore, the 

verification analysis indicates that the QM methods 

exhibit a considerable improvement in the detection 

of local extreme rainfall events. 

4.2 Real time implementation of QM techniques 

at Mumbai  

 

The Operational implementation of different QM 

methods to NCUM-G precipitation forecasts has 

been conducted. For verification, we have selected 

two heavy rainfall events reported by IMD. 

Specifically, we will verify the heavy rainfall 

events that happened on 21 July 2023 and 26 July 

2023, to assess the improvements in bias-corrected 

rainfall obtained using various QM methods for 

such events over the Santacruz station. Fig. 9 

depicts the rainfall event which occurred on 21 July 

2023, across different forecast lead times 

(highlighted by the black ellipse). On 21 July 2023, 

the observed rainfall exceeded 100mm/day,



VayuMandal 49(2), 2023 
 

57 

 

 
Figure 8: Categorical rainfall scores (a) POD (top left), (b) FAR (top right), and (c) ETS (bottom left) at 

different thresholds for raw (NCUMGRAW) and calibrated rainfall obtained using different QM 

approaches at the Santacruz station for Day-1 forecasts.  

 

 

 
Figure S2: Categorical rainfall scores (a) POD (top left), (b) FAR (top right), and (c) ETS (bottom left) at 

different thresholds for raw (NCUMGRAW) and calibrated rainfall obtained using different QM 

approaches at the Santacruz station for Day-03 forecasts. 
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Figure S3: Categorical rainfall scores (a) POD (top left), (b) FAR (top right), and (c) ETS (bottom left) at 

different thresholds for raw (NCUMGRAW) and calibrated rainfall obtained using different QM 

approaches at the Santacruz station for Day-05 forecasts. 
 

whereas NCUMGRAW significantly 

underestimated this event. The calibrated 

precipitation obtained from different QM methods, 

particularly GPQM, shows substantial 

improvement, ranging from 59 to 96.3 mm/day. 

The most notable the highest magnitude observed in 

the Day-03 forecasts, attributed to the model spin-

up issue, resulting in better forecasts with increased 

forecast lead times. 

 

Similarly, in Fig. 10, another heavy rainfall event  

on 26 July 2023, is depicted over the Santacruz 

station . Mumbai experienced heavy rainfall 

exceeding 100mm/day on 26 July 2023, as per 

IMD. The NCUMGRAW underestimated this 

event, with magnitudes ranging from 8.5 to 31.5 

mm/day in Day-05 to Day-01 forecasts. Whereas, 

all parametric methods exhibit improved 

forecasting of this event in Day-01 to Day-03 

forecasts, with magnitudes closely aligning with the 

observed rainfall. Notably, this event is missing in 

the Day-05 forecast of NCUMGRAW. One 

potential reason for this absence might be the 

spatial dislocation of this synoptic event in the 

model's forecasts. Furthermore, the calibrated 

rainfall obtained from various QM methods does 

not anticipate this rainfall at all. It is important to 

note that QM's statistical adjustments rely on 

historical quantiles, posing challenges in bias-

correcting highly localized mesoscale events with 

significant rainfall. Nevertheless, it remains 

imperative to address biases in such specific events, 

and an alternative approach for accurately 

identifying such forecasts is essential through the 

utilization of BC techniques based on synoptic 

events. 
 

5. Summary and Conclusion 
 

This study systematically assesses the efficacy of 

three  QM bias correction techniques, incorporating 
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both empirical and parametric methods, to improve 

NCMRWF precipitation forecasts for Santacruz 

station ( 72.85 0E, 19.117 0N) in Mumbai during 

the  southwest monsoon season of 2020-23. The 

CDF of calibrated precipitation, derived from 

different  QM approaches, demonstrates a close 

alignment with the IMD station dataset, particularly 

for higher thresholds. Furthermore, the temporal 

evolution of daily rainfall reveals that the GPQM is 

the best method for  predicting  most of the events 

across various forecast lead times, improving from 

raw forecasts. Additionally, the skill of calibrated 

rainfall is evaluated for moderate to heavy rainfall 

occurrences, with all QM approaches  showing 

higher POD and ETS compared to raw forecasts. 

Notably, in Day-01 to Day-05 forecasts, different 

QM techniques exhibit a tendency to overestimate 

false alarms for moderate to heavy rainfall events. 

However, as the forecast lead time increases, there 

is a discernible improvement in mitigating the 

overestimation of calibrated precipitation during 

such events compared to raw forecasts. 

Consequently, the findings of this study strongly 

suggest the advantage of calibrated rainfall using 

various QM techniques, especially GPQM, over 

raw forecasts. This calibrated approach proves to be 

more suitable for hydrological applications like 

regional-scale flood forecasting. 
 

This study contributes valuable insights into the 

effectiveness of three QM techniques in enhancing 

precipitation forecast accuracy, a critical factor in 

advancing flood prediction. But still, this study has 

several caveats, including the spatial dislocation of 

synoptic events in the model's forecasts, higher 

false alarm rates resulting from smaller sample 

sizes, etc. Additionally, the fixed climatological 

distribution used for bias correction may not 

account for changes in climate, potentially 

hindering improvements in rainfall prediction. 

These issues lead to discrepancies between 

observed and forecasted physics, impacting 

calibration as the statistical adjustment via 

quantitative methods relies on historical quantiles. 

Consequently, further analysis is warranted based 

on improving calibration techniques to enhance 

flood prediction capabilities by developing more 

dynamic approaches that can adapt to spatial and 

temporal variations in extreme weather events and 

evolving climatic conditions.   
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