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ABSTRACT 

Weather forecasting has evolved as the interest of numerous scholars from diverse study areas owing to its impact on 

human existence. Artificial intelligence (AI) frameworks have advanced in the last decade, combined with the widespread 

availability of massive weather and climate datasets and the advent of computational technology. It has motivated many 

researchers to investigate hidden hierarchical patterns in large volumes of datasets for weather and climatological 

forecasting. This comprehensive review paper highlights the evolving landscape of weather and climate research through 

the lens of machine learning (ML) and deep learning (DL) methodologies. As AI continues to redefine scientific inquiry, the 

latest advancements, applications, and challenges in leveraging ML and DL for meteorological and climatological insights 

has been documented. Surveying a broad spectrum of research, the review encapsulates the transformative impact of these 

intelligent systems on short-term weather forecasting, prediction of extreme events, climate forecasting, and refinement of 

weather and climate models. As a compendium of current knowledge, it serves as a guiding resource for researchers, 

practitioners, and policymakers navigating the dynamic intersection of climate science and machine learning, laying the 

groundwork for future advancements in the applications of AI frameworks in weather and climate prediction.            
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1. Introduction 
 

The prevailing weather conditions exert a 

significant impact on human lives, influencing a 

substantial portion of our daily activities and 

livelihood. Unforeseen weather conditions have led 

to considerable loss of life and property. The 

atmosphere is primarily a physical system 

pertaining to most of its behaviors being governed 

by the laws of Physics that can be expressed in the 

form of mathematical equations. These equations 

account for the conservation of momentum, mass, 

energy, and water (or chemical species) and the 

equation of state which can be used to predict the 

fate of the thermodynamic state. The state of the 

atmosphere (or weather) at a certain time (initial 

state) can be specified using the observations, and 

then the equations can be computed to calculate the 

change of state over time or the future state of the 

atmosphere, called weather forecasting (prediction). 

Forecasting is important because the weather has an 

immediate influence on an individual’s every day 

routine. It holds the potential to reduce or prevent 

the severity of losses and enhance operational 

efficiency. The impact of accurate forecasting 

extends to a diverse range of applications, with 

notable significance in defence, aviation, 

agriculture, etc. In the agricultural sector, timely 

forecasting plays a pivotal role in determining the 

optimal period for sowing, transplanting, irrigation, 

and harvesting, leading to increased crop 

productivity, yield and steady food supply chains. 

Similarly, the energy sector is facilitated by 

efficient management of demand supply and 

distribution, optimizing power generation, etc. The 

transportation industry also relies heavily on 

weather predictions for planning and scheduling 

flights, trains, and maritime activities. Also, 

accurate prediction of extreme weather events, such 

as cyclones, thunderstorms, etc., is vital for disaster 

management, providing the opportunity for early 

warnings and essential mitigation. 
 

The complex equations involved in weather 

forecasting are non-linear and require powerful 

computational resources to bring out the solutions. 

With the increasing complexities, the accuracy 

decreases because of the number of inherent 
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assumptions made. The first event in formulating 

the current weather forecasting was initiated by 

Leverrier (1855) in the Paris Astronomical 

Observatory. However, the importance of initial 

conditions was demonstrated much later by 

Bjerknes (1904). Using this knowledge, the first 

attempt of weather prediction was made by 

Richardson (1922) by solving the hydrodynamic 

equations numerically. Thus, during the early 

1950s, the most important achievement in 

understating the physical properties of the 

atmosphere was the solution of hydrodynamic 

equations using the Numerical Weather Prediction 

(NWP). Earth's atmospheric conditions are 

characterized by sporadic and unpredictable shifts, 

which are typical and widespread phenomena 

occurring across the globe. In most cases, 

operational weather forecasting relies on NWP, 

which involves solving a set of nonlinear 

(primitive) equations. However, in recent times, 

artificial neural network (ANN) has evolved as a 

potent tool for data modeling, which is capable of 

capturing and representing intricate relationships 

between the inputs and outputs. It was conceived 

with the aim of implementing artificial systems 

capable of executing intelligent tasks akin to those 

performed by the human brain. In essence, ANNs 

have the capability to approximate any nonlinear 

function (Nielsen, 2015).  
 

The deep neural network (DNN) is a type of ANN 

characterized by a multi-layered architecture. 

Essentially, they possess the capacity to 

autonomously learn features through a neural 

network (NN) rather than relying on manual feature 

selection (Wang and He, 2004). This contributes to 

achieving enhanced accuracy and improved 

generalization utilizing the acquired features. 

Therefore, in recent times, machine learning (ML) 

and deep learning (DL) applications have found 

their importance in the time series problems 

particularly those characterized by intricate 

correlations (Liu and Hu, 2013) such as weather 

and climate prediction. However, when the 

behavior of a system is predominantly influenced 

by spatial or temporal context, traditional ML 

approaches may not be optimal. Under such 

circumstances, DL architectures are more proficient 

in automatically extracting spatio-temporal features, 

and prove to be more effective in gaining 

comprehensive insights into such systems 

(Reichstein et al., 2019). It is anticipated that 

leveraging data-driven methods, such as ML/DL, 

will help overcome certain conventional challenges 

associated with weather forecasting. However, not 

many studies have incorporated such approaches 

for complex weather and predictions including the 

city-specific applications.  
 

The objective of the current review extends beyond 

the examination of NN architectures tailored for 

diverse meteorological data types, besides 

conducting a comprehensive comparative analysis 

considering factors such as spatio-temporal scales, 

datasets, and benchmarks. The review highlights 

possible applications of AI/ML/DL frameworks in 

atmosphere and ocean studies. Notably, Singh et al. 

(2022c) reviewed many aspects of earth system 

sciences, including statistical downscaling, 

seismological events, short and medium range data 

driven weather forecasting, extended range 

forecasting, seasonal and climate scale forecasting, 

improving the physical processes in dynamical 

models, nowcasting weather and tracking storm 

cells, NWP, hydrogeological modeling, climate and 

human health, etc. Unlike Singh et al. (2022c), the 

current review encompasses both national and 

international level applications of ML/DL-based 

approaches specifically for weather and climate 

studies in an extensive manner. 
 

2. Weather and Climate Prediction 
 

Weather (short-lived scenarios) forecasting 

primarily focuses on predicting the atmospheric 

conditions within a timeframe ranging from a few 

hours up to seven days. The objective is to provide 

highly precise and timely information that allows 

the governing authority to make prompt decisions. 

It mostly includes maximum and minimum 

temperatures, precipitation (probability and 

intensity), wind, relative humidity, cloud cover, etc. 

(Reichstein et al., 2019). Additional considerations 

may involve visibility conditions, as well as 

warnings about extreme weather events like 

thunderstorms, cyclones, etc. Moderate to long term 

climate forecasting focuses on predicting the 

changing climatic conditions over extended 

durations, ranging from months to several years 
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(Howe and Wain, 1993). Unlike weather forecasts, 

climate forecasts focus on the average states or 

long-term trends of climate (e.g., temperature 

(minimum, maximum and average), precipitation 

(trend and pattern), ocean-atmosphere phenomenon 

like El Niño or La Niña conditions, etc.,), and the 

probability of extreme climatic catastrophes such as 

droughts (floods), along with anticipated cyclone 

activities (Hantson et al., 2016). The projections 

also cover decadal climatic trends like global 

warming. However, the accuracy of the long term 

prediction is often arguable when compared to short 

term weather predictions. It is primarily due to the 

complex, multi-scale, and multi-faceted interactions 

embedded with the global climate scenario, and 

absence of comprehensive long term datasets (Chen 

et al., 2023). 
 

Historically, weather and climate prediction has 

been approached as a physical problem, with 

meteorologists dedicating efforts to enhance 

forecast accuracy through an understanding of 

associated processes. However, the scenario has 

shifted with the explosion of multi-scale and multi-

dimensional meteorological data, transforming the 

entire landscape into spatio-temporal challenges. 

Conventionally, future weather conditions are 

ascertained by integrating the governing partial 

differential equations derived from current 

atmospheric states (Bauer et al., 2015). These 

equations encapsulate the dynamical, 

thermodynamical, and chemical processes within 

the atmosphere. The NWP models relying on the 

physical equations usually operate on a discretized 

grid system and simulate atmosphere and ocean 

conditions. While these models have achieved 

considerable success, they face limitations in 

certain applications (Vogel et al., 2018). One 

significant constraint is in terms of horizontal 

resolution of global NWP models, which can be 

taken at the most 10 kilometers while simulating 

the states of atmosphere and ocean that hinders the 

accurate representation of critical processes like 

cloud microphysics. Therefore, these models 

employ parameterizations to approximate the 

effects of these phenomena. Also, data assimilation 

(DA) techniques are adopted for accurate 

representation of the current state of the atmosphere 

and are necessary for initializing the model. 

Moreover, NWP models demand substantial 

computational resources, especially for ensemble 

forecasting, adding to their complexity and 

operational costs (Ben-Bouallegue et al., 2023; 

Garg et al., 2022; Rasp et al., 2020).  
 

In recent years, data-driven models have emerged 

as promising alternatives (de Burgh-Day and 

Leeuwenburg, 2023; McGovern et al., 2023). These 

models have shown comparable or even superior 

performance in certain cases. These approaches 

based on ML/DL frameworks consider the initial 

datasets as inputs, which strive to discern the 

inherent laws or relationships within the input data. 

(Keisler, 2022) developed a model based on a graph 

neural network (GNN) with a spatial resolution of 

1° and 13 vertical levels, demonstrating accuracy 

comparable to some operational NWP models. 

Subsequently, Lam et al. (2023) scaled a GNN to a 

higher resolution of 0.25°, enriching the legacy. 

Pathak et al. (2022) introduced FourCastNet, 

utilizing a modified vision transformer at the same 

spatial resolution, showcasing improved accuracy 

in weather forecasting. Bi et al. (2023) developed 

Pangu-weather, incorporating a variation of the 

vision transformer architecture, and achieved 

superior performance compared to the high-

resolution Integrated Forecast System (IFS) 

developed by the European Centre for Medium-

Range Weather Forecasts (ECMWF). While data-

driven models have demonstrated impressive 

performance, a significant challenge lies in their 

interpretability (Bommer et al., 2023; Mayer and 

Barnes, 2021). Unlike traditional physical models 

where the equations and processes are well-defined 

and understood, data-driven models often operate as 

black boxes, making it difficult to interpret how 

they arrive at their predictions (McGovern et al., 

2019). This lack of transparency opens up a new 

realm of research focused on enhancing the 

interpretability of data-driven models. 
 

2.1 How NWP Works 
 

NWP models are tools that help to simulate 

atmospheric and ocean conditions and predict the 

weather based on current conditions. They take into 

consideration the current state and utilize relevant 

equations to forecast the future state of the 

atmosphere. The observed data sets may be utilized 
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to feed the models. To address the unevenly spaced 

observations, DA techniques and objective analysis 

approaches are utilized, providing quality control 

and getting values at areas that the model's 

mathematical algorithms can use (often an equally 

spaced grid). The data is then utilized as an 

initiation point for the model's prediction. Primitive 

equations are a set of nonlinear equations used to 

anticipate atmospheric physics and behavior. After 

these equations have been initialized using the 

gridded data, the rates of change are determined. 

The rates of change are used to anticipate the future 

state of the atmosphere. The equations are then 

applied to this newly formulated atmospheric 

condition to calculate new rates of change, which 

are subsequently used to forecast the atmosphere at 

a later date and/or time. This time stepping 

procedure is performed until the response achieves 

the desired predicted time. The distance between 

the points on the computational grid determines the 

duration of the time step in the model, which is 

selected to offer numerical stability. 
 

Currently, the NWPs are widely used in the global 

(hydrostatic) and mesoscale (non-hydrostatic) 

models (e.g., MM5 (Dudhia, 1993), LM (Doms et 

al., 1997), COAMPS (Hodur, 1997), ARPS (Xue et 

al., 2000), WRF (Skamarock and Klemp, 2008)). 

The numerical simulations are used to forecast 

mesoscale phenomena (e.g., the convective clouds 

over tropics) with a horizontal resolution of a few 

kilometers or less. However, the NWP is an 

intricate non-linear system, where physical forcing 

dominates the dynamics within the sub-grid scale, 

hence need the physical parametrization schemes. 

The physical parameterizations deals with the 

processes (e.g., radiation, convection, cloud, 

precipitation, diffusion, orographic drag, etc.) that 

could not be represented by the basic 

thermodynamic variables in the primitive equations. 

However, a high-resolution numerical model is 

required to accurately represent these physical 

processes. 
 

The applications of NWP are not only limited to the 

weather prediction of the Earth but also expanded 

across the planets of the solar system. There are 

several models available for planets, which use a 

range of physical parameterization schemes that are 

widely developed from the Earth version of the 

Models. Notably, the simulations from different 

models may vary significantly, especially at the 

near-surface, because of the rapidly changing grid 

spacing, which primarily impacts the prediction of 

prognostic variables. Also, the key processes 

responsible for influencing the prediction varies for 

different planets. For example, in the case of Mars, 

the airborne dust and water ice are the key 

modulators of its weather and climate (Guha et al., 

2021a, 2021b, Guha and Panda, 2022). Since the 

NWP model is a computer program that produces 

weather forecasts at a given location for a given 

future time duration by using the primitive 

(nonlinear) equations, this could lead to problems 

and uncertainties such as the approximation of 

initial conditions incorporated while compiling the 

model, the process of data assimilation. Also, an 

incomplete understanding of the complex 

atmospheric processes could unavoidably introduce 

errors. Besides, NWP models produce terabytes of 

simulation results, which is computationally 

expensive, and compels researchers to deduce 

computationally simpler methodologies (Ren et al., 

2021).  
 

2.2 How ML Works 
 

Soft computing is a collection of approaches that 

are based on biological processes like thinking, 

genetic evolution, organism survival, and the 

human nervous system. It's a broad word that 

encompasses research on reasoning simulation, the 

human nervous system, and evolution in various 

domains. For example, the Fuzzy Logic approach 

can recognize the ambiguity of a solution and 

present it with a degree of vagueness appropriate 

for human decision-making. It is commonly used in 

a variety of AI-based ANN applications. The NNs 

are inspired by the biological networks of neurons 

and are based on artificial neurons. They use 

mathematical models as information processing 

units to uncover patterns in data that are too 

complicated for people to notice. Human brains are 

capable of describing real-world conditions that 

machines are unable to do. NNs were developed in 

the 1950s to address this problem. An ANN 

attempts to mimic the network of neurons that make 

up a human brain so that computers may learn and
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Figure 1: Venn diagram depicting the relationship between artificial intelligence, machine learning and 

deep learning, and its evolution over the years. 
 

make decisions in the same way humans do. ANN 

is made up of normal computer programs that are 

linked together like brain cells that work by training 

imprecise numerical data representing a system's 

behavior. A method of learning from samples 

supplied to the model is used to complete this 

objective. Because of this learning capability, ANN 

is an excellent tool for environmental modelling. 

These networks, which are made up of input layers, 

intermediate layers, and an output layer, are 

employed to detect nonlinear interactions. ANN is 

beneficial over other methods since it makes no 

assumptions about the distribution of the data. 
 

AI applications and techniques provide increased 

capabilities for data analysis, model creation, and 

decision-making, and are becoming an intrinsic part 

of climate and weather prediction. Forecasts at 

different scales have significantly improved over 

the last several decades due to the use of numerical 

techniques and rising processing capacity. Large 

amounts of meteorological and environmental data 

can be effortlessly processed by AI algorithms from 

a variety of sources, such as weather stations, 

contemporary equipment, satellites (sensors), 

aircraft, etc. Such algorithms are quite proficient at 

detecting patterns, trends, and correlations in 

complex datasets, hence leading to more precise 

forecasts. The basic processing elements of an 

ANN are neurons, which are stacked in layers and 

coupled to neurons in subsequent layers. Because 

the ANN is a feedforward architecture, only 

connections between neurons in one layer and 

neurons in the next layer are allowed. 

Interconnections between neurons within the same 

layer or with neurons in the preceding layers is 

restricted. 
 

The basic evolution of AI is depicted in figure 1. 

ML is an application of AI that builds a 

mathematical model based on sample historical 

data, known as "training data", in order to make 

predictions or decisions without being explicitly 

programmed to do so. DL is part of a broader 

family of ML methods based on ANNs with 

representation learning. DL models have seen a
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Figure 2: Schematic diagram showing the urban-atmosphere interaction. 
 

massive rise in popularity for land and atmospheric 

studies over the past few years. That mainly has 

been because of the reliability and accuracy of 

results produced using these models. DL has taken 

over almost all of the widely researched subjects in 

the field of science and definitely in weather 

forecasting, climate studies, air quality research and 

prediction, land use and land cover (LULC) related 

studies, remote sensing application-based studies, 

and many more areas. Such models can 

automatically extract relevant features from large 

and complex weather and climate datasets. This 

helps in identifying important patterns and 

relationships between atmospheric variables, like 

temperature, humidity, pressure, and wind speed. 

For instance, Liu et al. (2016) developed a deep 

convolutional neural network (DCNN) framework 

coupled with Bayesian-based hyper-parameter 

optimization scheme to detect patterns and increase 

accuracy of forecasts. Also, these techniques are 

capable to handle spatial and temporal data 

concerning weather and climate (LeCun et al., 

2015; Goodfellow et al., 2016). DL models in 

particular, excel in capturing spatial dependencies 

and temporal patterns (e.g., Convolutional Long 

Short Term Memory or ConvLSTM), making them 

suitable for such tasks. These algorithms can 

effectively model non-linear relationships between 

different meteorological variables and can process 

large volumes of data quickly, making them 

suitable for real-time weather forecasting 

applications, leading to more accurate and timely 

predictions. Besides, multiple ML/DL models are 

often combined to create an ensemble framework 

that can facilitate more robust and reliable forecasts 

by considering multiple sources of uncertainty in 

weather and climate studies (Weyn et al., 2021). 

The following section encompasses further details 

regarding the ML/DL applications in weather and 

climate studies. 
 

3.1 Applications pertaining to urban studies 
 

Meteorological challenges associated with cities 

have become a growing concern on the 

international stage. Initially, this area of study was 

primarily undertaken by atmospheric and 

environmental scientists. However, since 2010, 

interest in urban climate has expanded significantly 

to the energy, and engineering sector (Masson et al., 

2020). The urban-atmosphere interaction has its 

effect across various scales, i.e., from smaller scale 

(such as urban environment and individual 

buildings) to regional-scale (such as regional 

climate change) phenomena. Urban features 

influence the atmospheric flow, and microclimates, 

thereby altering the transfer, distribution, and 

deposition of atmospheric pollutants within the 

urban areas (Figure 2). Therefore, mapping the 

transformation of the urban LULC forms the basis 

of most of the urban-related studies. Also, the 
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impact of cities on temperature, precipitation, wind 

patterns, etc., has been extensively studied as it can 

alter the mesoscale weather systems like 

thunderstorms and, consequently, the precipitation 

patterns. 
 

The precise spatial characteristics of the urban 

LULC have encouraged the use of ML algorithms 

in the classification of high-resolution images in 

general (Ma et al., 2019). Although many medium-

resolution (10-30 m) satellite imageries, such as 

Landsat and Sentinel-2 data, are freely available for 

LULC mapping, it is difficult to use typical DL 

methods directly to these images due to the lack of 

clarity in distinguishing intricate structures. 

Convolutional neural network (CNN) is probably 

the most popularly used algorithm in LULC 

classification due to its inherent capability in 

handling spatiotemporal imageries. It can also be 

used to retrieve land surface temperature (LST) 

from AMSR-2 datasets and yield satisfactory 

results (Tan et al., 2019). LST can be estimated 

using Deep Belief Network (DBN) from the 

AMSR-E and AMSR2 data (Wang et al., 2020). It 

helps in better understanding of NNs, especially for 

estimating LST from satellite observations. 

Temporal CNN (Temp-CNN) algorithm can be 

used to classify time series satellite imageries 

(Pelletier et al., 2019). Usually, Temp-CNNs are 

more precise than random forest (RF) or other 

Recurrent Neural Networks (RNNs) for satellite 

image time series classification. Similar studies 

have been carried out using various ML algorithms, 

viz., RF (Tassi and Vizzari, 2020; Talukdar et al., 

2020), support vector machine or SVM (Tassi and 

Vizzari, 2020; Talukdar et al., 2020), classification 

and regression tree or CART (Delalay et al., 2019; 

Shetty, 2019; Arpitha et al., 2023), etc. Use of DL 

algorithms (e.g., LSTM and U-Net) for earth 

observation satellite image classification 

concerning LULC has successfully been 

implemented and in some instances proven better 

than conventional ML approaches (Uba, 2016; 

Parente et al., 2019; Carranza-García et al., 2019; 

Naushad et al., 2021; Yassine et al., 2021). Besides, 

DL-based algorithms have been implemented in 

studies relating to image segmentation, object based 

image analysis, object detection, etc. (Abdi et al., 

2017; Branson et al., 2018; Ma et al., 2019). 

Considering that the majority of human activities 

occur in cities, understanding the consequence in 

the global warming scenario is crucial. 

Anthropogenic influences, primarily from emission 

of greenhouse gases (GHGs) and aerosols, are the 

leading contributors to the ongoing global warming 

trend (IPCC, 2007, 2023). Energy production and 

consumption (CO2 and CH4 emissions) are major 

sources of GHG emissions, with industrial activities 

and transportation also playing significant roles 

(Carmichael et al., 1999; Crutzen, 2004). Also, the 

tropospheric Ozone (O3), a byproduct of urban 

pollutants, is on the rise, contributing further to the 

urban climate change issue (Hidalgo et al., 2008). 

Some distinctive characteristics of urban weather 

and climate include: (i) warmer city temperature 

compared to surrounding rural areas is one of the 

most distinguishable features of urban climate 

commonly known as the urban heat island (UHI) 

effect (Garstang et al., 1975; Oke, 1982, 1995), (ii) 

alterations in wind pattern (Oliveira et al., 2003; 

Brazel et al., 2005), (iii) urbanization-induced 

clouds and precipitation (Shepherd 2013; Theeuwes 

et al., 2019), (iv) urban boundary layer (Song and 

Wang, 2016), (v) urban air quality and pollution 

(Seinfeld, 1989; Mage, 1996; Cohen et al., 2004), 

etc. 
 

AI-based algorithms have been employed to 

downscale global climate models, and develop 

high-resolution datasets to facilitate climate 

researchers focusing on urban areas (Dibike and 

Coulibaly, 2006; Serifi et al., 2021; Park et al., 

2022). NNs contribute to modeling and simulations 

by incorporating different climate variables and 

predicting long-term climate trends in urban 

settings (Knutti et al., 2003; Krasnopolsky et al., 

2013). Besides, it improves the accuracy of short-

term weather forecasts by analyzing historical data, 

atmospheric conditions, and real-time information, 

therefore providing early warning systems for 

extreme weather events. Climate resilience 

planning by conducting different scenario specific 

analysis considering different climate projections, is 

also supported by AI-driven models. This assists 

urban planners and policymakers for making 

informed decisions to enhance the resilience of 

cities to climate change impacts. Also, ML and DL 

frameworks have been extended to the study of 
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UHI impacts (Mathew et al., 2019; Han et al., 2022; 

Mohammad et al., 2022; Lin et al., 2023), 

evapotranspiration (Saggi and Jain, 2019), solar 

radiation (Patel, 2021), urban air quality 

(Iskandaryan et al., 2020; Kalaivani and 

Kamalakkannan, 2022; Gokul et al., 2023; Gupta et 

al., 2023; Wang et al., 2023b), O3 (Aljanabi et al., 

2020; Cheng et al., 2021; Han et al., 2022), energy 

consumption (Zhang et al., 2021), water 

management (Fu et al., 2022), extreme events 

(Gope et al., 2016; Sankaranarayanan, 2020; Khan 

and Maity, 2022), etc. with successful 

implementations over various cities. 
 

3.2 Air pollution studies 
 

Environmental contamination is currently being 

regarded as a big problem for all countries of the 

world. Air pollution is a big and concerning 

environmental matter caused by increased 

mechanization, transportation, and population. 

South and East Asian locales are regarded as the 

most polluted ones in the world, according to the 

2020 World Air Quality Report study through 

IQAir's air quality information platform. Notably, 

India is home to more than 20 most polluted cities 

(out of 50) of the world. According to WHO, Indian 

cities surpass the minimum standards for particulate 

matter (PM2.5) levels in the atmosphere by 500% 

on average. In India, mostly automotive traffic and 

diesel generators contribute to air pollution. The 

scenario across rural India gets worsened by the use 

of fossil fuels for cooking purposes. Besides, 

industrial activities, burning of waste and crop 

residue after harvesting are some of the major 

causes of air pollution in India. The influence of air 

pollution is determined by the variables present. 

The principal pollutants include O3, carbon 

monoxide (CO), Sulphur dioxide (SO2), Nitrogen 

monoxide (NO), and Nitrogen dioxide (NO2), etc. 

Once in the atmosphere, these elements can 

participate in subsequent chemical processes, 

resulting in smog and acid rain. The most important 

cause of concern about rising air pollution is its 

harmful effects on human health. Long-term air 

pollution exposure has been linked to an increase in 

respiratory and cardiovascular disorders such as 

asthma, bronchitis, lung cancer, and heart attacks. 

More than half of the health problems related to air 

pollution are usually asthmatic. 

A Legendre NN for prediction of air pollution 

parameter was devised by Nanda et al. (2011). It 

was concluded that the performance was better than 

regression models. One dimensional convnets and 

bidirectional GRU were used by Tao et al. (2019) 

for time series forecasting of PM2.5 concentration. 

DL-based strategies outperformed shallow ML 

models in terms of prediction accuracy. 

Bidirectional GRUs process time series both 

chronologically and anti-chronologically, capturing 

patterns that one-direction GRUs may miss, and 

thereby increasing the time series feature learning 

capabilities. A notable research in air pollution 

modeling with DL was done by Ayturan et al. 

(2018). They discovered that generative adversarial 

networks (GANs) are particularly effective at 

creating content using two competing networks: 

one for generating synthetic forecasts and the other 

for identifying actual values from synthetic data. 

Although learning how real data behaves is vital for 

predictive models, they tend to produce better 

results when the model is trained properly in the 

presence of sophisticated data synthesizers. 
 

Comparison of the performance of various DL 

models with ARIMA was done by Arsov et al. 

(2021). The results suggested that DL models can 

be utilized to predict air pollution well. They used 

air quality measurements and meteorological data 

to forecast air pollution in the Skopje city region for 

6, 12, and 24 hour time periods. The suggested 

architecture (based on LSTM networks and CNNs) 

performed admirably and accurately forecasted 

PM10 concentrations in the short run. The short-

term predictions are much better than the ARIMA 

baseline model. Because it is more difficult to 

forecast occurrences further in the future, the 

model's performance falls as the time horizon 

grows. Fan et al. (2017) created a spatio-temporal 

prediction framework for air pollution using deep 

RNN. It has a high degree of precision in predicting 

both severe pollution occurrences and average 

patterns. A detailed review of data mining and 

machine learning for air pollution epidemiology 

was conducted by Bellinger et al. (2017) to infer 

that data mining has a lot of potential to support 

more useful applications in the field of air pollution 

using different ML algorithms like decision tree 

(DT), SVM, k-means clustering and the APRIORI. 
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A comparison of various ML regression models 

was performed by Harishkumar et al. (2020) to 

analyze air pollution (mainly PM2.5) over Newport, 

Taiwan using Taiwan Air Quality Monitoring 

Network (TAQMN) data sets. PM2.5 concentration 

was forecasted to infer that gradient boosting 

regressor model performed better in terms of 

multiple error metrices such as mean absolute error 

(MAE), mean squared error (MSE), root mean 

square error (RMSE) and coefficient of 

determination (R2). Several other studies utilized 

ML/DL frameworks to predict air quality by using 

time series occurrences including the pollutants 

such as O3 (Freeman et al., 2018; Hong et al., 

2023), PM2.5 (Tong et al., 2019; Zhang et al., 

2021), NO2 (Ghahremanloo et al., 2021; Sonawani 

et al., 2021), SO2 (Kurnaz et al., 2022; Shaziayani 

et al., 2023), PM10 (Bouakline  et al., 2020; 

Aceves-Fernández et al., 2020; Kurnaz et al., 2022), 

etc. 
 

3.3 Extreme weather events 
 

Among the extreme weather events, ML finds its 

application in case of tropical cyclones (TCs), 

thunderstorms, heavy rainfall events, etc. TCs are a 

major weather hazard that feature low atmospheric 

pressure, high winds and heavy rain. It can also be 

accompanied by gales, gusts, rainstorms and storm 

surges that can generate winds greater than 119 km 

(~74 miles) per hour. In the early stages, TCs could 

only be identified by observing changes in weather 

conditions and warm sea surfaces. But with the help 

of satellites, detection and tracking of TCs became 

easier. Numerous satellites orbit around the Earth 

and capture continuous images of Earth’s surface in 

visible and infrared wavelengths. This helps in 

detecting cold, high cloud tops using infrared 

images, which also show deep convective features 

of a TC, and its location and intensity as well. 

Meteorologists use these observed satellite images 

along with numerical models for the simulation of 

TCs and predict their location, future path, and 

intensity of the cyclone. 
 

TC forecasts are mainly focused on predicting the 

track, intensity, and landfall characteristics. ML 

algorithms make use of the meteorological and 

ocean datasets from historic data archives, along 

with satellite observations to predict TC events. For 

predicting genesis of TCs, ML uses meteorological 

observations to envisage whether a depression will 

evolve into a TC and its frequency, which makes it 

a classification and regression task. Mainly used 

algorithms are DTs, logistic regression, SVM, RF, 

multi-layer perceptron (MLP) and CNNs (Kim et 

al., 2019). For TC track forecasts, both ML and DL 

based models can be used to forecast the position of 

TCs using DTs, MLP, RNNs, and CNNs (Giffard-

Roisin et al., 2020). Spatiotemporal 

changes/formation of TCs can also be predicted 

using CNN-LSTM frameworks (Chen et al., 2019). 

CNNs are mainly used to estimate intensity using 

satellite images (Pradhan et al., 2017; Wimmers et 

al., 2019; Chen et al., 2019). Hybrid networks of 

CNN and LSTM further improve results (Chen et 

al., 2019; Wang et al., 2021) too. The problem of 

rapid intensification (RI) which hinders intensity 

prediction is treated as a classification or regression 

problem and can be predicted using DTs, SVM and 

RNN (Mercer and Grimes, 2017; Chandra, 2017; 

Chen et al., 2022). Features of TCs, precipitation 

and tidal data can be used to predict storm surges 

which occur during the time of TC. It helps in 

prediction of disastrous impact forecasts using 

MLP, Support Vector Regression (SVR) (Lee, 

2009; Chen et al., 2012; Hashemi et al., 2016; 

Huang et al., 2018). For wind field forecast, CNN 

and SVR are commonly used (Park et al., 2016; 

Loridan et al., 2017). ML can also be used for 

advancing the parameterization schemes in NWP 

models (e.g., Mercer and Grimes, 2017). 
 

In recent studies, genesis forecasting is denoted as a 

classification task of ML for envisaging whether 

TC symptoms will evolve into TCs. There is a 

study by Wijnands et al. (2016) that worked on 

choosing the TC symptoms for short-term 

forecasting (upto 72 hours) of TC genesis using the 

Peter–Clark algorithm. Other studies (Richman et 

al., 2017; Nath et al., 2016) also highlighted the use 

of SVR and MLP for TC activity forecast, along 

with identifying potential predictors. Path 

prediction was attempted using a matrix neural 

network (MNN)-based (Zhang et al., 2018) and 

RNN-based (Moradi et al., 2016) models to 

generate effective results in comparison to other 

methods. Giffard-Roisin et al. (2020) proposed a 

fusion neural network model that combined past 
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trajectory data and re-analyzed images (3D wind 

and pressure) while adopting a moving frame of 

reference to track the storm for 24 hours. This fused 

network was so efficient that it forecasted the 

storms in seconds, and thus, acts as an important 

asset for real time TC forecasting. Wang et al. 

(2023a) developed a DL-based framework 

combining GRU and CNN called “GRU_CNN” to 

forecast TC tracks. Three additional environmental 

factors, steering flow, sea surface temperatures 

(SST), and geopotential height, along with 

historical trajectory data, were used as input, and it 

was found that historical steering flow is crucial for 

short-term predictions (within 24 hours), while SST 

and geopotential height contribute to improved 

forecasts for 24–72 hours. The proposed model 

even outperformed the Central Meteorological 

Observatory (China) forecast results, making it 

suitable for short-term TC track forecasting. 

Besides, Kumar et al., (2023b) used ML models 

like RF, eXtreme Gradient Boost (XGB), etc., for 

bias correction of TC intensity forecasts obtained 

from the National Centre for Medium Range 

Weather Forecasting (NCMRWF) Ensemble 

Prediction System (NEPS) over the North Indian 

Ocean (NIO). Varalakshmi et al., (2021) 

incorporated ML models like DT, KNN, LR, RF, 

XGB as classifiers in place of a fully connected 

layer in CNN to enhance prediction accuracy of 

TCs which was comparable to conventional ML/DL 

approaches. 

 

Alike TCs, thunderstorms pose a significant threat 

to human safety and property due to lightning 

(Holle, 2014, 2016), heavy rain (Davis, 2001; Smith 

et al., 1996), hail (Battaglia et al., 2019; Hohl et al., 

2002), and strong winds (Allen and Allen, 2016; 

Dotzek, 2003). These risks, which develop rapidly 

within a short timeframe, are challenging to 

precisely predict using numerical weather models. 

The NWP models can provide a general outlook for 

thunderstorms in a region, but they struggle to 

pinpoint the exact location and timing of severe 

impacts (Sun et al., 2014). Therefore, it is more 

effective to issue localized short-term warnings 

based on nowcasting, a statistical method that 

predicts near-term developments using the latest 

available observational data.  Traditionally, weather  

prediction systems relied on a mix of empirical and 

dynamical approaches. The recent progress in 

employing ML to model complex and dynamic 

phenomena, coupled with their notable successes in 

various applications, has prompted a closer 

examination of their potential for predicting 

thunderstorms (Geng et al., 2021; Pan et al., 2021; 

Zhou et al., 2020).  ML approaches in thunderstorm 

prediction leverage diverse data sources for model 

training, including radar networks, multispectral 

imagery, lightning data, NWP model outputs, 

Digital Elevation Models (DEM), and precipitation 

data (Leinonen et al., 2023; Leinonen et al., 2022b). 

Notably, ground-based radar observations emerge 

as a crucial predictor, with satellite observations 

follow closely behind. Leinonen et al (2023) 

introduced a recurrent-convolutional DL model 

designed to predict the occurrence of 

thunderstorms. The model generates probabilistic 

forecasts, enabling users to set thresholds for 

issuing warnings and taking precautionary measures 

for lightning, hail, and intense precipitation events. 

The model, based on the architecture utilized by 

Leinonen (2021) and Herruzo et al. (2021), 

demonstrated superior performance compared to 

competing structures like U-Nets and transformers. 

The success of this DL model is indicative of the 

transformative potential of ML in advancing 

thunderstorm prediction capabilities. The use of ML 

in thunderstorm prediction aligns with the inherent 

challenges faced by traditional NWP models. ML 

models demonstrate enhanced accuracy in capturing 

complex patterns and relationships within 

atmospheric data. They offer a real-time processing 

advantage crucial for dynamic weather events, 

enabling timely and accurate predictions (Leinonen, 

2021; Leinonen et al., 2022b). This adaptability is 

particularly important given the localized and 

rapidly evolving nature of thunderstorm hazards. As 

ML continues to make strides in thunderstorm 

prediction, ongoing research efforts are essential to 

address challenges such as the need for extensive 

and high-quality training datasets and the 

interpretability of complex models. As research in 

this area progresses, the synergy between 

meteorological expertise and ML innovation will 

pave the way for even more sophisticated and 

reliable thunderstorm prediction models.  
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Extreme rainfall can happen due to TCs, or 

thunderstorms or any other convective systems. In 

the world of weather forecasting, extreme rainfall 

prediction has never been easy due to its chaotic 

nature. With the changing climate, more extreme 

rainfall occurrences (and intensity) are anticipated 

(Goswami et al., 2006). Therefore, accurate 

forecasts demand a thorough scientific knowledge 

of the dynamics and patterns of rainfall. At present, 

there are several early warning systems operational 

(e.g., Heffer, 2013). Currently, the forecasting of 

extreme rainfall events is executed with the help of 

NWP models and there has been limited exploration 

through ML approaches, especially over India. A 

DL framework has been developed and trained to 

predict such events over Mumbai and Kolkata 

(Gope et al., 2016) using an anomaly frequency 

method (AFM)-SVM framework. Vitanza et al. 

(2023) adopted the Affinity Propagation algorithm 

along with K-means clustering to detect extreme 

rainfall events in Sicily. Some researchers like Hu 

and Ayyub (2019) focused on projecting the 

intensity of the rainfall during heavy rainfall events 

using ML approaches. An interesting study was 

presented by Sangiorgio et al. (2019), who analyzed 

the atmospheric water vapor content along with 

variables like temperature, pressure, humidity, etc., 

and used them to forecast the genesis of extreme 

rainfall events using DNN. Nayak and Ghosh 

(2013) considered past weather patterns in 

predicting extreme rainfall through SVM. Folino et 

al. (2023) introduced a Rainfall Estimation Model 

(REM) named “DeepEns-REM”, and used the 

model on real-time data from a region in southern 

Italy to highlight its effectiveness compared to 

traditional methods like Kriging interpolation and 

other ML techniques, particularly for predicting 

extreme rainfall events accurately. The model 

automatically integrates diverse data from multiple 

sources, employing residual blocks in base models 

along with a snapshot procedure for ensemble 

creation. Other researchers have also adopted 

ML/DL approaches for the forecasting of extreme 

events leading to floods (Yeditha et al., 2020; 

Keum et al., 2020; Motta et al., 2021; Kunverji et 

al., 2021), appreciable runoff (Dastorani et al., 

2018; Frame et al., 2022; Singh et al., 2022a), etc. 

  
 

3.4 Regional-scale weather and climate 
  

A precise prediction of weather and climate can 

help people make everyday decisions as well as 

more serious long term decisions. This can help in 

saving lives and property in times when bad 

weather events are approaching and also assessing 

the risks involved in a long run. For instance, it can 

be helpful for a country to make better decisions for 

its economy and growth. Forecasts for rainfall and 

temperature will be extremely useful for agriculture 

and, in turn, for world markets and the economy. 

The process of weather forecasting has improved 

and changed tremendously over time, from 

predicting the weather by examining cloud patterns 

to utilizing barometers and thermometers to 

analyzing satellite imaging and radar data. ML and 

DL models were introduced off late, to predict 

weather and simulate long-term changes or to 

perform climatological analysis and forecasting in 

the digital era by evaluating large amounts of data. 

These models have the benefits of making 

predictions based solely on historical data and 

employing a physics-free approach. For instance, 

DTs have been employed to classify a weather 

event with parameters like average temperature, 

humidity, sea level pressure etc. (Rajesh Kumar 

2013; Bhatkande and Hubballi, 2016). Arbitrary 

DTs give better accuracy because they use the 

Maximus classifier (Dudde and Apte, 2013). 

Similarly, DTs have given satisfactory accuracy for 

modelling rainfall prediction (Geetha and Nasira, 

2016). RF algorithm has proven to give better 

results with higher number of parameters (Karthick 

et al. 2021). Also, it can be adopted for error-

balancing in unbalanced data sets. An application of 

SVM is implemented for atmospheric temperature 

prediction and proven worthy to replace some of 

the NN-based models for weather forecasting 

applications (Radhika and Sashi, 2009). A similar 

comparative research has been done using SVM, 

MLP and Naive Bayes classification for weather 

and rainfall prediction (Prabha and Radha, 2019; 

Rao et al., 2012; Rani and Rao, 2013). Another 

comparative research using SVR, Lasso Regression 

and multiple linear regression (MLR) has predicted 

rainfall and appraised SVR to be a valuable and 

adaptable algorithm (Mohammed et al., 2020).  
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Abdulla et al. (2022) conducted a comparative 

analysis for evaluating the performance of adaptive 

DL models for weather prediction. It was found that 

employing a bidirectional LSTM (BiLSTM) model 

alongside adaptive learning significantly enhances 

temperature forecasting accuracy, reducing 

prediction error rates by 45%. When applied to 

various meteorological datasets, the proposed 

model consistently achieves a Mean Absolute 

Percentage Error (MAPE) between 8% and 10%, 

indicating its robustness and effectiveness. Weyn et 

al. (2021) introduced an ensemble Deep Learning 

Weather Prediction (DLWP) system, which 

forecasts six essential atmospheric variables at six-

hour temporal resolution. This computationally 

efficient model uses CNNs on a cubed sphere grid 

to produce global forecasts. Singh et al. (2022b) 

developed a DL-augmented NWP framework to 

improve short-range global precipitation at 1-, 2-, 

and 3-day forecasts. This hybrid model converted 

the spherical global data into a cubed sphere grid by 

using a modified DLWP-CS architecture. 
 

Besides, ARIMA model can be used to forecast 

future climate i.e. rainfall, and maximum and 

minimum temperature (Kocharekar et al., 2019). 

Hernandez et al. (2016) used an auto encoder and 

MLP for predicting the accumulated rainfall for the 

next day, by using data of previous days. Yen et al. 

(2019) developed a forecasting model using 

Reservoir Computing (RC). It is a supervised 

learning strategy for RNNs that employs echo state 

networks (ESNs) and deep echo state networks 

(DeepESNs). DeepESN's correlation coefficient 

was found to be higher than that of ESN and 

commercial NN techniques. Sawale and Gupta 

(2013) employed ANN to find a non-linear 

relationship between historical data for temperature, 

wind speed, and humidity analysis and forecasting. 

The prediction error was found to be extremely low, 

and learning converges quickly. DL algorithms 

were employed by several researchers for the 

forecasting of atmospheric parameters including 

temperature (Haque et al., 2021; Gong et al., 2022), 

rainfall (Narejo et al., 2021; Wei and You, 2022; 

Fahad et al., 2023; Panda et al., 2024; Singh et al., 

2024), wind speed (Chen et al., 2018; Afrasiabi et 

al., 2020; Jiang et al., 2021), humidity (Setiawan et 

al., 2022; Khudhur and Kareem, 2022), cloud cover 

(Berthomier et al., 2020; Baran et al., 2021), solar 

irradiance (Rajagukguk et al., 2021), lightning 

(Zhou et al., 2020; Geng et al., 2021; Leinonen et 

al., 2022a; Singh et al., 2023), etc.  
 

Downscaling of low-resolution data into high-

resolution observation data has recently become a 

popular approach in earth sciences. For instance, 

downscaled datasets have been prepared for 

summer monsoon rainfall and local precipitation 

over the Indian region using DL approaches like 

super-resolution convolutional neural network 

(SRCNN), stacked-SRCNN, DeepSD, Super-

Resolution Generative Adversarial Networks (SR-

GAN), ConvLSTM, and U-Net (Kumar et al., 2021, 

2023a). Such approaches produced more accurate 

and reliable estimates of meteorological variables, 

facilitating validation of the climate model forecasts 

at the local to regional level. 
 

Climatological analysis of long term atmospheric 

datasets has been utilized for the analysis and 

forecasting of extreme events like floods (Fang et 

al., 2021; Moishin et al., 2021; Liu et al., 2024), 

droughts (Abbes et al., 2023; Danandeh Mehr et al., 

2023; Nourani et al., 2023), El Niño (Ham et al., 

2019; Mu et al., 2021)., etc. Danandeh Mehr et al. 

(2023) developed a conjugated CNN-LSTM to 

predict multi-temporal drought indices, specifically 

three-month and six-month standardized 

precipitation evapotranspiration (SPEI-3 and SPEI-

6), within Ankara province, Turkey. A similar study 

was performed over the drought-prone areas of the 

southern part of Alberta, the difference being the 

DL model adopted, i.e., LSTM (Nourani et al., 

2023). In the case of flood forecasting as well, 

LSTM combined with CNN is a commonly adopted 

framework.  
 

Climatological events like the variations in El Niño 

Southern Oscillation (ENSO) are associated with 

numerous regional climatic extremes and ecological 

consequences and impact global weather and 

climate. Ham et al. (2019) trained a CNN 

framework for the prediction of ENSO events based 

on historical simulations and reanalysis datasets, 

which was found to be comparable to dynamical 

forecast systems. In fact, the proposed model 

predicted detailed zonal distribution of SST with 

higher accuracy as compared to dynamical models, 
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hence proving to be a powerful tool for forecasting 

ENSO events and the associated characteristics. 

The climatological events like forecasting of the 

Indian summer monsoon rainfall (ISMR) using 

earth observation and ground station datasets has 

also been attempted by several researchers using 

DL frameworks such as the ConvLSTM (Kumar et 

al., 2022), stacked auto-encoder and ensemble 

regression model (Saha et al., 2021), etc. 
 

4. Concluding Remarks 
 

The integration of ML and DL techniques into 

weather and climate prediction has emerged as a 

transformative paradigm, promising advancements 

in accuracy, efficiency, and the understanding some 

of the complexities associated with atmosphere and 

ocean. This study has explored the multifaceted use 

of these intelligent systems in a range of fields, 

highlighting how they may be used to improve 

climate modeling, anticipate extreme weather, and 

advance short-term weather prediction capability. 

These data-driven methods have proven their 

capability to manage non-linear interactions, adapt 

to changing conditions, and contribute to a more 

nuanced knowledge of localized weather 

occurrences by overcoming traditional limits 

associated with NWP models. In particular, their 

importance in fine-tuning global climate models to 

provide more precise projections suitable for cities 

has been brought to light by the investigation of 

downscaling concept using ML algorithms. This 

has practical implications for city planning and 

management, where accurate and localized climate 

information is indispensable for addressing the 

unique challenges posed by urbanization. This 

study, therefore adds to the expanding corpus of 

information that lays the path for a more robust and 

sustainable future at the nexus of meteorology, 

climatology, and AI. We can improve disaster 

preparation, promote sustainable urban growth, and 

better prepare society to deal with the challenges 

posed by a changing climate by continuously 

improving and broadening the applications of ML 

and DL in weather and climate prediction. The 

continued collaboration between AI and 

atmospheric research is extremely promising as it 

provides a mechanism to comprehend and forecast 

the Earth's climate system in a way that is more 

precise, flexible, and responsive. 
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